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ABSTRACT 

Microbiological hazards have been associated with seawater. Poor quality sea water may consequently have a 

severe impact on public health. Coastal sources used for abstraction of seawater cannot be classified as a pristine 

source. The use of water safety plans, combining sanitary surveys with microbiological criteria and appropriate 

water treatment, is proposed in order to ensure adequate hygiene conditions and to control hazards. The 

comprehensiveness of the sanitary survey, the stringency of microbiological criteria, and the need for treatment 

depend on the relative exposures associated to the different uses of seawater. For uses with low exposure to 

microbiological hazards, a basic sanitary survey and microbiological criteria based on the Directive 2006/7/EC 

are considered appropriate. For uses with a higher exposure, a more comprehensive sanitary survey, mandatory 

water treatment, and microbiological criteria based on Council Directive 98/83/EC with an additional criterion 

for Vibrio spp. are considered appropriate. For uses with highest exposure, a more comprehensive sanitary 

survey, mandatory water treatment, and microbiological criteria based on Council Directive 98/83/EC with an 

additional criterion for turbidity and Vibrio spp. are considered appropriate. Both inorganic and organic 

chemicals can be found in seawater in concentrations that are usually low. Therefore the use of seawater on fresh 

or processed fishery products or for re-vitalisation of live molluscs is unlikely to raise a health concern. A 

potential health concern may occur from the domestic use of bottled seawater where human exposure might be 

expected to be higher than for the other uses of seawater. Therefore, the concentration of chemicals in bottled 

seawater should comply with the standards laid down in Council Directive 98/83/EC on the quality of water 

intended for human consumption. It is recommended to use ultraviolet (UV) or other physical methods as the 
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preferred disinfection process to prevent the formation of hazardous disinfection by-products such as bromate 

and trihalomethanes. 

© European Food Safety Authority, 2012 
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SUMMARY 

Following a request from the European Commission, the Panel on Biological Hazards (BIOHAZ) and 

the Panel on Contaminants in the Food Chain (CONTAM) were asked deliver a scientific opinion on 

the minimum hygiene criteria to be applied to clean seawater and on the public health risks and 

hygiene criteria for bottled seawater intended for domestic use. 

European food legislation establishes the conditions for the use of clean seawater in land-based fishery 

establishments. Currently, the use of clean seawater is allowed for use in on-shore establishments, 

auctions and fish markets, for the handling and washing of fishery products, the production of ice for 

chilling fishery products and for rapid cooling of crustaceans and molluscs after their cooking. 

Nonetheless, there are no harmonised rules in the European legislation with regard to the sanitary 

criteria that clean seawater should respect.  

Based on incidents of food and waterborne infection, the properties and the distribution of the agents, 

microbiological hazards (including viruses, bacteria and parasites) have been associated with seawater. 

Poor quality sea water may consequently have a severe impact on public health through contamination 

which may occur during food processes. The hazards are associated either with bacteria, which are 

part of the natural marine biota (in particular Vibrio spp.), or pathogenic microbes derived from animal 

or human faecal contamination, which is most often of terrestrial origin. Nonetheless, there is 

currently not sufficient data on microbiological hazards to estimate the public health risks associated 

with the uses in on-land establishments for handling and washing fishery products, for the production 

of ice used for chilling, for rapid cooling of crustaceans and molluscs after cooking, and for bottled 

seawater. In the absence of data to propose risk-based criteria, hazard-based criteria are proposed 

instead. These should provide the same level of health protection as achieved by other food business 

operators through the use of potable water.  

It is underlined that coastal sources, used for abstraction of seawater in land-based establishments, 

cannot be guaranteed to be free from pathogens from the marine biota or from faecal contamination, 

and cannot be classified as a pristine source. 

Sanitary surveys provide information to optimize the site of abstraction in order to control sources of 

faecal pollution and chemical contamination. Additional safeguards will be needed to reduce 

contamination from endogenous marine flora (including pathogenic Vibrio spp. and C. botulinum). 

Since these hazards are associated with temperature and salinity (Vibrio spp.) as well as sediments (C. 

botulinum), abstracting seawater with high salinity (especially in waters of temperatures below 20 ºC), 

and free from particulate material will improve safety of seawater prior to treatment. The 

comprehensiveness of the sanitary survey, the stringency of microbiological criteria and the need for 

treatment will depend on the relative exposures associated to the different uses of clean seawater. 

When seawater is used for purposes that do not involve a direct contact with food (physical cleaning 

operations of utilities, surfaces, floors, equipment in facilities such as fish markets, auctions, fishery 

ports) or do not convey a contamination risk with prepared fishery products (e.g. handling and 

washing whole fishery products), it is considered that the exposure will be low. For this use, a basic 

sanitary survey and microbiological criteria based on the Directive 2006/7/EC are considered 

appropriate. Higher exposure to microbiological hazards will occur where seawater will be in contact 

with prepared, processed and/or ready-to-eat fishery products. For these uses, a more comprehensive 

sanitary survey, mandatory water treatment and microbiological criteria based on Council Directive 

98/83/EC and an additional criterion for Vibrio spp. are considered appropriate. Highest exposure to 

microbiological hazards occurs where seawater is used for revitalisation of live bivalve molluscs, as a 

component of salad dressings or other ready-to-eat products. For these uses, a more comprehensive 

sanitary survey, mandatory water treatment and microbiological criteria based on Council Directive 

98/83/EC for water offered for sale in bottles and an additional criterion for turbidity and Vibrio spp. 

are considered appropriate. 



Hygiene criteria to be applied to clean seawater 

 

EFSA Journal 2012;10(3):2613 4 

For verification of treatments, detection methods for E. coli and enterococci are defined in the 

international standards (ISO 9308-3 or ISO 9308-1 for E. coli and ISO 7899-1 or ISO 7899-2 for 

enterococci). Reference methods for the detection of Vibrio in seafood (ISO/TS 21872-1:2007 or 

ISO/TS 21872-2:2007) should be applied to seawater with appropriate modification. 

Both inorganic and organic chemicals can be found in seawater in concentrations that are usually low. 

Therefore the use of seawater on fresh or processed fishery products or for re-vitalisation of live 

molluscs is unlikely to raise a health concern. A potential health concern may occur from the domestic 

use of bottled seawater where human exposure might be expected to be higher than for the other uses 

of seawater, indicating that more rigid criteria are needed for bottled seawater.   

In line with the requirements for food business operators to use water of potable water quality laid 

down in Regulation 853/2004 it is concluded that the same approach should be applied for bottled 

seawater which will be placed on the market. Therefore the concentration of chemicals in bottled 

seawater should comply with the standards for chemicals (parameter values) as laid down in Council 

Directive 98/83/EC on the quality of water intended for human consumption.  

The Directive addresses a drinking water consumption of 2 l per day by a 60 kg adult. No data on the 

consumption of bottled seawater are available, but it can be assumed that this will be much less. 

Therefore applying the criteria laid down in Council Directive 98/83/EC will provide a high level of 

protection for consumers using bottled seawater.  

For nearly all chemicals the reported levels in seawater are below the respective parameter values laid 

down in the Council Directive 98/83/EC, indicating that there is no health concern. For boron, 

however, a mean value of 3.6 mg/l (range 0.7 – 4.9 mg/l) has been reported, which is well above its 

parameter value of 1 mg/l in Council Directive 98/83/EC, and also above the World Health 

Organization (WHO) guideline value of 2.4 mg/l. Therefore operators should measure boron levels in 

seawater and make an assessment of whether these levels might pose a risk for human health, given 

the consumption of bottled seawater, and should consider whether treatment with a selective boron ion 

exchange resin is needed to bring the boron concentration below its parameter value of 1 mg/l.  

No data were identified on the occurrence of acrylamide, epichlorohydrin and vinyl chloride in 

seawater. Since these compounds are particularly used in drinking water treatment and transport, it can 

be expected that the concentration in seawater will be low. It is therefore recommended that operators 

determine the levels of these chemicals in seawater to investigate whether continuous monitoring is 

needed.  

Bromate and trihalomethanes are disinfection by-products related to the use of, respectively, ozonation 

or chlorination. Because of its high bromide content these by-products may be more easily formed in 

seawater than in fresh water. When ultraviolet (UV) or other physical methods such as filtration are 

used as disinfection method these compounds will not be formed. It is therefore recommended to use 

these methods as the preferred disinfection process.  

The presence of toxic algae in source water, particularly in coastal water may pose a potential health 

risk for the consumer. However, due to their size algae can effectively be removed by sand or (micro) 

filtration. It is, however, possible that a certain number of toxic algae cells or toxins, if the cells are 

disrupted, can settle on whole or freshly prepared fishery products. It should be noted that in that case 

levels of marine toxins will be much lower than those reached by bio-accumulation of toxins in 

bivalve molluscs or fish.  
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BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION 

Regulation (EC) No 852/2004 of the European Parliament and of the Council on the hygiene of 

foodstuffs
5
 defines in Article 2 (h) ‗clean seawater‘ as "natural, artificial or purified seawater or 

brackish water that does not contain micro-organisms, harmful substances or toxic marine plankton in 

quantities capable of directly or indirectly affecting the health quality of food". 

Regulation (EC) No 853/2004 laying down specific hygiene rules for food of animal origin
6
 authorises 

in its Annex III, Section VIII point 3(c) the use of clean seawater for the handling and washing of 

fishery products, the production of ice for chilling fishery products and for rapid cooling of 

crustaceans and molluscs after their cooking. The use of clean seawater for washing or purifying live 

bivalve molluscs in purification and dispatch centres is also allowed by the same Regulation (Annex 

III, Section VII, Chapter IV, A1 and B2). 

In addition the same Regulation prohibits in Annex III, Section VII, Chapter VIII, point 2, that live 

bivalve molluscs be re-immersed in, or sprayed with, water after they have been packaged for retail 

sale and left the dispatch centre.  

In the food law legislation there are no harmonised rules regarding the sanitary criteria that clean 

seawater should respect, leaving the responsibility to the Member States to fix those criteria. 

However, harmonised criteria on the quality required for shellfish waters are established in Directive 

2006/113/EC of the European Parliament and of the Council of 12 December 2006.
7
 Shellfish waters 

are those coastal and brackish waters designated by the Member States as needing protection or 

improvement in order to support shellfish (bivalve and gastropod molluscs) life and growth and thus to 

contribute to the high quality of shellfish products directly edible by man. 

Some Member States were recently asked by certain food business operators to allow on the EU 

market bottled clean seawater for domestic use (e.g. cooking or "re-vitalisation" of live bivalve 

molluscs at home). Based on the information received, it seems that the seawater is submitted to 

"purification and filtration" before being placed on the market. 

In view of the above, the Commission needs to set harmonised hygiene criteria applicable to clean 

seawater for use in on-land establishments for the handling and washing of fishery products, the 

production of ice for chilling fishery products and for rapid cooling of crustaceans and molluscs after 

their cooking as foreseen in the hygiene Regulation. 

In addition, the Commission is in need of a scientific opinion concerning the risks to public health 

represented by the use of bottled clean seawater for domestic use and the hygiene criteria to be 

applied. 

 

  

                                                      
5
  OJ L 139, 30.4.2004, p. 1 

6
  OJ L 139, 30.4.2004, p. 55 

7
  O.J.L 376, 27.12.2006 p.14 
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TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION 

In accordance with Article 29(1) of Regulation No.178/2002, EFSA is requested:  

 to identify the minimum hygiene criteria to be applied to clean seawater for use in on-land 

establishments for the handling and washing of fishery products, the production of ice for 

chilling fishery products and for rapid cooling of crustaceans and molluscs after their cooking 

as foreseen in Annex III, Section VIII point 3(c) to Regulation (EC) No 853/2004, 

 to assess the public health risks of bottled clean seawater and to identify the hygiene criteria 

(bacteriological, viral and chemical) to be respected for domestic uses such as cooking or the 

"re-vitalisation" at home of live bivalve molluscs including the treatment that should be 

applied to this seawater before being placed on the market, 

 to identify the more appropriate detection methods to be used in routine analyses to verify the 

compliance with the above hygiene criteria. 
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ASSESSMENT 

1. Introduction 

European food legislation establishes the conditions for the use of clean seawater in land-based fishery 

establishments. Currently the use of clean seawater is allowed in on-shore establishments, auctions 

and fish markets, for the handling and washing of fishery products, the production of ice for chilling 

fishery products and for rapid cooling of crustaceans and molluscs after their cooking. The use of 

clean seawater for washing or purifying live bivalve molluscs in purification and dispatch centres is 

also allowed
8
 but it is outside the scope of this mandate.  

Although Regulation (EC) No 853/2004
9
 originally limited the use of seawater specifically to whole 

products and, on board ships, to gutted and headed fishery products, transitional provisions were 

arranged that permitted the use of clean seawater, until 31 December 2009, for all other uses 

(manufacture of ice and handling of fishery products in on-shore establishments and auctions, for 

cooling of cooked shellfish and molluscs). Article 11 of Commission Regulation (EC) No 

2076/2005,
10

 provides that clean seawater may also be used in land-based establishments until 

31 December 2009. This transitional arrangement has now become permanent within Regulation (EC) 

No 1020/2008, which states that the use of clean seawater for the handling and washing of fishery 

products does not represent a risk for public health as long as control procedures based on HACCP 

principles are developed and put in place by food business operators. Nonetheless, there are no 

harmonised rules in the European legislation with regard to the sanitary criteria that clean seawater 

should respect.  

The Codex Alimentarius Commission‘s Code of practice for fish and fishery products (CAC/RCP 52-

2003
11

) recommends the use of clean seawater for several operations in the fish industry, such as 

washing fish prior to filleting or cutting; washing fillets after filleting, skinning or trimming to remove 

any signs of blood, scales or viscera; washing of filleting equipment and utensils to minimize building 

up of slime, blood and offal; and after splitting. Seawater may be used also for washing of whole 

cephalopods and cephalopod products, and for cooling cooked crustaceans. The definition of clean 

seawater used in this document is similar to the one used in EU legislation. Codex Alimentarius 

defines ‗clean sea water‘ as seawater which meets the same microbiological standards as potable water 

and is free from objectionable substances.  

No criteria exist in the European legislation with respect to the use of seawater directly by consumers. 

Domestic uses of seawater such as cooking shellfish or "re-vitalisation" of live bivalve molluscs are 

new purposes that should be evaluated. The World Health Organization (WHO) has recently published 

the fourth edition of the guidelines for drinking-water quality, where drinking-water safety, including 

minimum procedures and specific guideline values and how these are intended to be used, are 

considered (WHO, 2011). However no indication is included in relation to the use of seawater by the 

consumer or the food industry. 

The framework for identifying adequate hygiene conditions for seawater has been to endorse the use 

of water safety plans that, when implemented by the food business operator, provide the basis for 

ensuring that seawater for the intended uses contain a number of pathogens and concentrations of 

chemicals that represent a minimal exposure to consumers. Options to control hazards in clean 

                                                      
8  These provisions are set out in Regulation (EC) No 852/2004, Part A of Annex I and in Chapter VII of Annex II, and in 

Part II of Chapter I and Chapters III and IV of Section VIII of Annex III, in particular for handling fishery products on 

board vessels.  OJ L 139, 30.4.2004, p. 1–54. 
9  Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific 

hygiene rules for food of animal origin. OJ L 139, 30.4.2004, p.55-205. 
10  Commission Regulation (EC) No 2076/2005 of 5 December 2005 laying down transitional arrangements for the 

implementation of Regulations (EC) No 853/2004, (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament 

and of the Council and amending Regulations (EC) No 853/2004 and (EC) No 854/2004. OJ L 338, 22.12.2005, p. 83–

88. 
11  www.codexalimentarius.net/download/standards/10273/CXP_052e.pdf 

http://www.codexalimentarius.net/download/standards/10273/CXP_052e.pdf
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seawater include a combination of sanitary surveys, with microbiological criteria and appropriate 

water treatment based on the multiple-barrier principle. The stringency of microbiological criteria 

depends on the relative exposures associated to the different uses of clean seawater; less stringent 

criteria to be applied to clean seawater intended for handling, washing and chilling of whole fishery 

products and more stringent criteria to be applied to clean seawater intended for handling, washing and 

chilling of prepared and/or processed fishery products, and for rapid cooling of crustaceans and 

molluscs after their cooking, and for bottled seawater for domestic use. It is proposed that the less 

stringent criteria are based, e.g. on Directive 2006/7/EC. More stringent criteria should provide 

equivalent public health protection to potable water standards, e.g. based on Council Directive 

98/83/EC.
12

 Because of the characteristics of the marine environment, to ensure meeting potable water 

standards it is considered appropriate to subject the seawater to treatment. Minimum hygiene criteria 

were requested only for on-land establishments, according to terms of reference. The use of seawater 

on board of vessels is not covered in this document, neither is the use of bottled seawater outside 

domestic environments. 

2. Description of uses of seawater  

Clean seawater can be used in the food industry for the following purposes: 

 Cleaning of facilities and equipment. Seawater can be used in establishments such as fish 

markets, on-shore establishments and auctions. Seawater is used to remove gross organic 

material and wastes from gutting equipment and utensils by hosing and to minimize build-up 

of slime, blood and debris. 

 Manufacture of ice for cooling and storage of fishery products, either fresh or processed. It is 

used on ships, on-shore establishments and auctions, fish markets, etc., to cool down whole 

fish. Seawater ice has a slightly lower melting point than freshwater ice with the advantage of 

cooling fish at a slightly faster rate and to a lower temperature. It melts faster than freshwater 

ice and consequently has to be replenished more often. Another advantage of seawater ice is 

its ability to be easily manufactured on shore or at sea where freshwater ice may not be readily 

available. Refrigerated seawater is also used to chill large quantities of fish. It is generally 

used with mechanical refrigeration units that cool seawater to below 0 °C. In some cases, 

brine or water of similar salinity to seawater is used. Seawater mixed with ice is known as 

chilled seawater and allows products to be cooled rapidly while reducing mechanical damage 

during packaging and handling.  

 Washing of whole fishery products is a normal practice in auction facilities, but also on ships 

before unloading. Whole fish are washed in seawater by hosing during sizing and grading, to 

remove loose scale, foreign waste and reduce bacterial load prior to gutting.  

 Washing after operations such as gutting, beheading, skinning or trimming is done to remove 

blood, viscera, and scales. Hosing filleting equipment and utensils removes blood and offal 

and minimizes the build-up of slime. All these operations can be done using clean seawater as 

well as potable freshwater. 

 Washing and cooling of crustaceans and molluscs after cooking. Cooking is followed by rapid 

cooling which can be done in different ways, such as using refrigeration chambers, or less 

commonly, using refrigerated seawater or brine. Cooling must be implemented until a 

temperature approaching that of melting ice is reached.  

 Water supply for fish and crustacean tanks.  

                                                      
12

 Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. OJ L 330, 

5.12.98, p. 32-54. 



Hygiene criteria to be applied to clean seawater 

 

EFSA Journal 2012;10(3):2613 11 

Bottled seawater is a new product which is being marketed by a few food business operators in the 

EU. It can be used for culinary purposes at domestic level (e.g. cooking or "re-vitalisation" of live 

bivalve molluscs at home) and is advertised for use in the following domestic food preparation 

activities: 

 Cooking of fish, molluscs, crustaceans, and pasta. 

 Adding as a constituent of dough for bread baking, pizzas or savoury pastries. 

 As a component of salad dressing (seawater/oil and seawater/vinegar). 

 

According to the producers, bottled sea water may undergo treatment for example by filtration (5 μm) 

and UV irradiation or microfiltration. 

3. Hazard identification and characterisation 

The approach for hazard identification has been to include those food- or waterborne biological 

hazards that may be present in seawater due to either being naturally occurring pathogens 

(autochthonous microbiota), or due to faecal contamination from human or animal sources 

(sewage/surface runoff/rivers and streams and/or direct contamination by human activity such as 

bathing). Also chemicals, either from natural or anthropogenic origin that may be present in seawater, 

and toxic algae that might pose a health concern, are included in the hazard identification. 

3.1. Microbiological hazards 

3.1.1. Norovirus 

Noroviruses (NoV) belong to the family Caliciviridae, that is divided into genera. NoV and Sapovirus 

are the two out of five genera of the family Caliciviridae that contain viruses that cause infections in 

humans. NoV have also been detected in pigs, cattle, mice, cats, dogs, and sheep, and sapoviruses in 

pigs. The other genera of the family Caliciviridae are Lagovirus, Vesivirus, and Nebovirus 

encompassing viruses infecting rabbits, and brown hares (lagoviruses), sea lions, swine, cats, dogs, 

fish, seals, other marine animals, cattle and primates (vesiviruses), and cattle (Nebovirus) (EFSA Panel 

on Biological Hazards (BIOHAZ), 2011).  

3.1.1.1. Survival/growth in ice, fishery products and seawater 

Noroviruses are unable to grow outside a permissive host (in this instance humans) but their 

transmission can be through consumption of filter-feeding shellfish which demonstrates their ability to 

survive in seawater (Carter, 2005; EFSA Panel on Biological Hazards, 2011). Infectivity in shellfish 

may not be reduced after one month storage at 4ºC, after freezing or in ice (Butot et al., 2008; Carter, 

2005).  

3.1.1.2. Data linking presence in seawater to food-borne illness  

Calicivirus (including norovirus) causes approximately 90 % of epidemic non-bacterial outbreaks of 

gastroenteritis around the world and is responsible for many foodborne outbreaks of gastroenteritis. 

The virus is transmitted by food or water contaminated with human faeces and by person-to-person 

contact. Outbreaks of norovirus disease often occur in closed or semi-closed communities, such as 

long-term care facilities, hospitals, prisons, dormitories, and cruise ships where once the virus has 

been introduced, the infection spreads very rapidly. Many norovirus outbreaks have been traced to 

food that was handled by one infected person (EFSA and ECDC, 2011). 

In the EU summary report on trends and sources of zoonoses and zoonotic agents and food-borne 

outbreaks 2009 information on the food vehicle was provided for all but one of the 43 verified 

outbreaks caused by calicivirus (including norovirus). In contrast to previous years, where crustaceans, 

shellfish, molluscs and products thereof, and buffet meals were the most frequently associated food 

vehicles, fruit, berries, juices and other products thereof were the major food vehicle in 2009, 

implicated in 22 outbreaks. Other relevant food vehicles were vegetables and juices and products 
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thereof (six outbreaks, 254 cases) and mixed or buffet meals (two outbreaks, 204 cases). The settings 

that were most often reported were restaurants, households, schools and kindergartens and canteen or 

workplace catering and residential institutions (EFSA and ECDC, 2011). 

Probably the best known presentation of NoV is that of large outbreaks of vomiting and diarrhoea, that 

led to the initial description of ―winter vomiting disease‖ (Mounts et al., 2000). The majority of NoV 

gastroenteritis cases results from direct person-to-person transmission. However, NoV related 

outbreaks have been shown to be food- or waterborne, caused by for example, contaminated shellfish 

(Doyle et al., 2004; Kingsley et al., 2002; Le Guyader et al., 2003), raspberries (Ponka et al., 1999) or 

drinking water (Carrique-Mas et al., 2003; Kukkula et al., 1999; Parshionikar et al., 2003).  

A challenging question is how much disease caused by noroviruses can be attributed to foodborne 

spread. It is clear that the major mode of transmission for noroviruses remains person-to-person (de 

Wit et al., 2001b; Fretz et al., 2005; Karsten et al., 2009; Pajan-Lehpaner and Petrak, 2009). Due to the 

high rate of secondary transmissions, small initial foodborne events may rapidly present like person-

to-person outbreaks, if the initial introduction event was not recognized. In The Netherlands, 

approximately 12-15 % of community cases of NoV gastroenteritis were attributed to foodborne 

transmission, based on analysis of questionnaire data, and this has been used in later burden of disease 

estimates. In the EU summary report on trends and sources of zoonoses and zoonotic agents and food-

borne outbreaks 2009 outbreaks were stratified into possible and verified foodborne outbreaks, where 

epidemiological evidence for a food source or detection of the pathogen in food is considered as 

evidence. Only 5 % of NoV outbreaks have been labelled as verified, which reflects the difficulties in 

detecting NoV in food items.  

3.1.1.3. Adverse health effects and incidence 

In humans, NoV and sapoviruses cause gastroenteritis, while in other animals these viruses can cause 

a range of different clinical syndromes, including oral lesions, systemic disease with hemorrhagic 

syndromes, upper respiratory tract infections. So far, the NoV and sapoviruses are the only 

caliciviruses known to cause disease in humans, with the exception of anecdotal zoonotic infection 

with vesiviruses.  

Few studies have looked at the incidence and health impact of NoV infection at the community level. 

The most extensive data are from the UK (Tam et al., 2012; Tompkins et al., 1999; Wheeler et al., 

1999) and the Netherlands (de Wit et al., 2001b), where a randomised sample of the community 

participated in cohort studies of infectious intestinal disease (IID). The incidence of community-

acquired IID was calculated as 274 per 1000 person years in the UK (Tam et al., 2012) and 283 per 

1000 person years in The Netherlands (de Wit et al., 2001a; Tompkins et al., 1999). Viruses were the 

most frequently identified causes of community acquired gastroenteritis, with NoV detected in 11 % 

of cases in The Netherlands and 7 % in the UK. NoV infection is common in all age groups but the 

incidence is highest in young children (<5 yrs). In recent years, the incidence of norovirus outbreaks 

has increased with the emergence of new variants, in particular genogroup II (Lopman et al., 2004). 

3.1.1.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

There is no microbiological evidence proving a link between Norovirus presence in seawater and 

human disease through direct ingestion of contaminated seawater. A separate criterion for Norovirus is 

not considered necessary. Indicator organisms are likely to provide a better indication of faecal 

contamination of seawater. 

3.1.2. Hepatitis A virus 

The etiological agent of hepatitis A is the hepatitis A virus (HAV) which belongs to genus 

Hepatovirus within family Picornaviridae, and as such it consists of a non-enveloped icosaedral 

capsid of around 30 nm in diameter containing a positive ssRNA genomic molecule of 7.5 Kb 

(Fauquet et al., 2005). A single serotype of HAV has been so far reported. 
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3.1.2.1. Survival/growth in ice, fishery products and seawater 

HAV is a highly stable virus, able to persist for extended times in the environment (Abad et al., 1994a; 

Abad et al., 1994b; Sobsey et al., 1988) and its transmission by contaminated foods and drinking water 

has been demonstrated (Bosch et al., 1991; Dentinger et al., 2001; Pinto et al., 2009; Reid and 

Robinson, 1987; Rosemblum et al., 1990; Sanchez et al., 2002), although most cases seem to occur 

through person-to-person transmission. Foods of primary importance are those susceptible to be 

contaminated at the pre-harvest stage such as bivalve molluscs, particularly oysters, clams and 

mussels, salad crops, such as lettuce, green onions and other green leafy vegetables, and soft fruit, 

such as raspberries and strawberries. All these types of food have been implicated in foodborne HAV 

outbreaks (CDC, 1997; Halliday et al., 1991; Pinto et al., 2009; Shieh et al., 2007; Wheeler et al., 

2005). Epidemiological data therefore indicate that infectivity is retained within shellfish. The virus 

can also retain infectivity following freezing or in ice (Butot et al., 2008; Carter, 2005). 

3.1.2.2. Data linking presence in seawater to food-borne illness 

The first documented shellfish-borne outbreak of ―infectious hepatitis‖ occurred in Sweden in 1955, 

when 629 cases were associated with raw oyster consumption (Roos, 1956). However, the most 

significant outbreak of HAV infection occurred in Shanghai, China, in 1988, in which almost 300,000 

cases were caused by consumption of clams harvested from a sewage‐polluted area (Halliday et al., 

1991). This is the largest virus‐associated outbreak of food poisoning ever reported. Depurated 

shellfish have been associated with outbreaks of norovirus, hepatitis A gastroenteritis, and other viral 

diseases (Conaty et al., 2000). The virus has also been associated with the consumption of 

contaminated fresh-cut vegetables and fruit. The EU summary report on trends and sources of 

zoonoses and zoonotic agents and food-borne outbreaks 2009 reported one verified food-borne 

outbreak due to Hepatitis A virus (EFSA and ECDC, 2011). 

3.1.2.3. Adverse health effects and incidence 

The prevalence of hepatitis A in different geographical areas of the world is closely related to their 

socioeconomic development (Gust, 1992; Hollinger and Emerson, 2007; Previsani et al., 2004). The 

endemicity is low in industrialised regions and high in other parts of the world. The epidemiological 

pattern has important implications on the average age of exposure and hence, as above stated, on the 

severity of the clinical disease. Since hepatitis A infection induces a life-long immunity (Hollinger and 

Emerson, 2007), severe infections among adults are rare in highly endemic regions where most 

children are infected early in life. In contrast, in low endemic areas the disease occurs mostly in 

adulthood, mainly as a consequence of travelling to endemic regions, having risky sexual practices or 

consuming contaminated water or food; and hence the likelihood of developing severe symptomatic or 

fatal illness is high.  

The Hepatitis A virus is distinguished from other viral agents by its prolonged (two to six weeks) 

incubation period and its ability to spread beyond the stomach and intestines into the liver. It often 

induces jaundice, or yellowing of the skin, and in rare cases leads to chronic liver dysfunction. 

3.1.2.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

There is no microbiological evidence proving a link between Hepatitis A virus presence in seawater 

and human disease through direct ingestion of contaminated seawater. A separate criterion for 

Hepatitis A virus is not considered necessary. Indicator organisms are likely to provide a better 

indication of faecal contamination of seawater. 

3.1.3. Salmonella 

Salmonella is a facultatively anaerobic, Gram-negative bacterium that can cause illness in humans and 

animals. Salmonella are excreted in the faeces of animals (including birds) and humans that are 

infected with, or asymptomatically excreting, the organism. Strains of Salmonella Typhi/Paratyphi 
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cause enteric fever, a serious systemic illness. Non-typhoidal Salmonella cause gastroenteritis in 

humans. 

3.1.3.1. Survival/growth in ice, fishery products and seawater 

Studies using seawater inoculated with high concentrations of Salmonella have shown that while the 

T90 value is in the order of one day, the organism can survive for extended periods in this matrix: the 

period varies with the recovery protocol but ranges from approximately one year to twenty years 

(Dhiaf et al., 2010; Morinigo et al., 1990; Sugumar and Mariappan, 2003). Salmonella Senftenberg has 

been reported to persist in the marine environment for more than five years (Martinez-Urtaza and 

Liebana, 2005). However, the survival of Salmonella Typhi in similar experiments has been reported 

much shorter with less than 0.1 % survival after three days (Nabbut and Kurayiyyah, 1972). Growth of 

Salmonella may occur if nutrients are present in the seawater. Salmonella does survive in frozen foods 

(FSA, 2003; Ripabelli, et al., 2004), however the extend of survival may be affected by the food 

matrix. 

Salmonella has been reported to be present in up to 12.2 % of raw fish and 2.6 % of ready-to-eat 

fishery products (Heinitz et al., 2000). A study of imported fish in Japan showed approximately 30-40 

Salmonella cells/100g (Asai et al., 2008) and multiplication will therefore increase the risk of 

infection. Salmonella is a mesophilic organism and the growth rate of this organism is markedly 

reduced at temperatures above 15˚C while the growth of most strains is prevented at temperatures 

above 7˚C (ICMSF, 1996). However, most studies on minimum growth temperature were 

investigated in products other than seafood. S. Heidelberg has been reported to have a generation time 

of 28h and 31h in the English sole and sterile crab respectively at 8˚C (ICMSF, 1996). Growth of 

Salmonella occurred in cooked crab inoculated with Salmonella and stored at 11˚C both in air and 

under modified atmosphere containing 50 % CO2  (Ingham et al., 1990). No growth was seen in either 

atmosphere at 7 °C. Salmonella have the ability to proliferate at pH values ranging from 3.8 to 9.5 

with optimum being 7.0-7.5 (ICMSF, 1996). Growth of Salmonella is generally inhibited at 3-4 % 

NaCl, but salt tolerance increases with increasing temperature in the range 10-30˚C (D‘Aoust and 

Maurer, 2007) and minimum water activity for growth is 0.94 (ICMSF, 1996).  

The EU summary report on trends and sources of zoonoses and zoonotic agents and food-borne 

outbreaks 2009 (EFSA and ECDC, 2011) included data on samples tested for Salmonella. Twelve 

MSs and Norway reported investigations of Salmonella in fish and fishery products with 25 samples 

or more. An overall percentage of 0.3 % of the tested samples was positive for Salmonella, which was 

at the same level as in 2008. Three MSs (Germany, Italy and Spain) reported positive samples. For 

Germany and Spain this was at a very low level but Italy reported one specific investigation with 73 

samples of unspecified fishery products, where six samples were positive (8.2 %). Concerning 

molluscan shellfish and live bivalve molluscs, a total of 4,819 samples (from eight MSs) were tested in 

investigations with 25 samples or more, and 1.1 % of these were positive. Spain found the highest 

level of contamination with 3.9 % of live bivalve molluscs being positive (N=358). Norway tested 92 

samples of raw molluscan shellfish with no positive. Not all reports on molluscan shellfish include 

information on whether the sampled items were cooked, raw and/or ready-to-eat. Tests on crustaceans 

were reported by seven MSs (with 25 samples or more). Only one out of a total of 1,437 samples was 

positive. This was one out of 686 single samples at retail reported by Germany 

3.1.3.2. Data linking presence in seawater to food-borne illness  

The proportion of salmonellosis outbreaks attributed to fishery products is generally much lower than 

that for many other groups of foodstuffs (in the range of 1 to 2.5 % of reported outbreaks) and thus 

fishery products are not considered a significant vehicle for this illness (FAO, 2010). 

A dose-response relationship has been developed that shows that the probability of infection changes 

from 1:400 for the ingestion of one cell to 1:2 for the ingestion of 10,000 cells (FAO/WHO, 2002). 

The model relates to foodborne infection and may not be directly applicable for waterborne infections: 

there will be no matrix-protective effect for the bacteria with direct ingestion in water. 
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Contaminated drinking water is widely accepted as an important risk factor in the transmission of 

typhoid (WHO, 2006). There are also reports of non-typhi Salmonella spp. being linked to illness, 

either through contaminated drinking water itself or ice made from this (Taylor et al., 2000; WHO, 

2006). There is some evidence linking typhoid with gross sewage pollution of both fresh and marine 

recreational waters (Parker, 1990; PHLS, 1959). A WHO report on health risks from recreational 

waters presented no evidence linking non-typhoidal salmonellosis with saline recreational waters 

(Pond, 2005). 

A German study showed that Salmonella were present in 12.3 % of samples taken from North Sea 

sites outside designated bathing waters but not in any of samples taken from such designated bathing 

waters (Tobias and Heinemeyer, 1994). In other studies from Spain, Morocco and Mexico, the 

proportion of seawater samples positive for Salmonella spp. varied from 2.3 to 4.1 % (Martinez-

Urtaza et al., 2004; Setti et al., 2009; Simental and Martinez-Urtaza, 2008). Efstratiou et al. (2009) 

showed that levels of either total coliforms or faecal coliforms adequately predicted the likelihood of 

the presence of Salmonella in seawater samples, although enterococci did not. However, others have 

argued that E. coli is not a suitable indicator for Salmonella in the environment (Winfield and 

Groisman, 2003). This may well be the case in those situations where certain strains of Salmonella 

persist in marine ecosystems for extended periods. 

3.1.3.3. Adverse health effects and incidence 

Transmission of Salmonella to humans is predominantly via water or food contaminated with faecal 

material, or cross-contaminated from other products containing the organism, or contaminated by 

infected food-handlers. Strains of Salmonella Typhi/Paratyphi cause enteric fever, a serious systemic 

illness. Incubation period ranges from 7 to 28 days. Symptoms include malaise, headache, fever, 

cough, nausea, vomiting, constipation, abdominal pain, chills, rose spots, bloody stools. Strains of 

non-typhoidal Salmonella may cause gastroenteritis in humans. Incubation period ranges from 8 to 72 

hours. Symptoms include abdominal pain, diarrhoea, chills, fever, nausea, vomiting and malaise. 

Systemic infection such as septicaemia may occur especially in susceptible patients such as the very 

young, very old and immune-compromised.  

3.1.3.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

There is little evidence to support seawater as a significant source of salmonellosis. An exception may 

be the acquisition of typhoid in endemic areas from seawater grossly contaminated with sewage. In 

most circumstances any criteria for faecal indicator bacteria should indicate the likelihood of 

Salmonella contamination. A separate criterion for Salmonella is not considered necessary. 

3.1.4. Vibrio cholerae, parahaemolyticus and vulnificus 

Vibrios are natural inhabitants of marine systems with a worldwide distribution. The different species 

of this genus show specific ecological preferences and consequently have different habitat 

distributions.  

3.1.4.1. Survival/growth in ice, fishery products and seawater 

Vibrios are native organisms of marine environments throughout the world and form part of the 

indigenous microflora of the environment at the time of seafood capture or harvest. V. 

parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus are resident of estuarine environments and 

their boundaries of distribution are strongly associated with the gradient of salinity. V. cholerae 

occupies freshwater and brackish habitats, whereas V. vulnificus is present in environments with 

intermediate levels of salinity and V. parahaemolyticus shows preference by more saline environments 

and may be present in off-shore waters. Due to the affinity for areas of moderate salinity, the 

distribution of these three species is primarily confined to estuaries and coastal areas with salinity 

values below 30 ppt. In these areas, vibrios show a complex life cycle governed by seasonal variations 

of seawater temperature (Joseph et al., 1982). Pathogenic vibrios show a preference for warm waters 
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and their numbers in the environment remain low when water temperatures drop below 16 °C with 

highest abundance at temperatures above 20 °C (West, 1989). Coastal areas are also the most 

important areas of fishing and shellfish production and the presence of pathogenic vibrios in seafood 

can result in major public health concerns.  

Pathogenic vibrios may be found on the skin, chitinous shell, gills as well as the intestinal tracts of fish 

or shellfish (ICMSF, 1998). Subsequent improper handling and the absence of a bactericidal step (e.g. 

cooking) may raise the level of bacteria in the final product and present a health risk to consumers. 

Molluscan bivalves are filter feeders and accumulate microorganisms from their surrounding waters, 

which may also contain vibrios. They are usually grown and harvested in near-shore and estuarine 

waters and are therefore likely to harbour high concentrations of naturally occurring organisms, 

including pathogenic vibrios. As they can be eaten raw or after a very mild heat treatment, they 

constitute a significant health risk to the consumers, if contaminated (Gram and Huss, 2000). 

V. vulnificus is usually associated with seafood from estuarine or coastal marine environments with 

warm water temperatures and moderate salinity, such as the southern coastal US States. Although V. 

vulnificus is most often associated with filter-feeding shellfish, the organism can be present in fish and 

other marine products. V. vulnificus is present in waters, sediments, plankton, molluscs, crustaceans 

and finfish, for example within estuaries of the Gulf Coast of the USA (FAO/WHO, 2005). A recent 

study in India highlighted the presence of V. vulnificus in the tropical waters of the southwest coast of 

India (Parvathi et al., 2004). 

V. cholerae will grow rapidly in temperature-abused foods and will also survive for extended periods 

in chilled and frozen foods, but it does not survive desiccation for more than 48 hours. The cells are 

not heat-resistant and are readily destroyed by cooking and pasteurisation. V. parahaemolyticus differs 

from V. cholerae in that it is an obligate halophile and will not grow unless a salt concentration of at 

least 0.5 % is present. Like V. cholerae, V.  parahaemolyticus will grow rapidly in temperature-abused 

foods and survives chilled and frozen storage, but not drying or mild heat processes. V. vulnificus is a 

halophile requiring at least 0.5 % salt to grow and will tolerate levels of up to 5 %. It multiplies in live 

oysters, but not at temperatures of less than 13˚C. Like other species it resists low temperatures for 

some time, but is destroyed by cooking and is not resistant to desiccation. 

3.1.4.2. Data linking presence in seawater to food-borne illness  

Vibrio is recognized as a primary cause of bacterial gastroenteritis associated with seafood 

consumption in many areas of the world, including Asia and the U.S. The number of infections related 

to these pathogens has increased since 1990. Vibrios are concentrated in the gut of filter-feeding 

molluscan shellfish, such as oysters, clams and mussels, where they can multiply. The majority of 

food-borne illness is caused by V. parahaemolyticus, Vibrio cholerae, or Vibrio vulnificus. V. 

parahaemolyticus and V. cholerae are mainly isolated from gastroenteritis cases associated with 

consumption of seafood (both species) or contaminated water (V. cholerae). In contrast, V. vulnificus 

is primarily reported from extra intestinal infections (septicaemia, wounds, etc.) and may be associated 

with consumption of seafood in some specific geographical areas. 

Pathogenic vibrios have been detected in a broad range of seafood products in which they can survive 

different processes. Foods associated with illnesses due to consumption of V. parahaemolyticus 

includes crayfish, lobster, shrimp, fried mackerel, mussel, tuna, seafood salad, raw oysters, clams, 

steamed/boiled crabmeat, scallops, squid, sea urchin, mysids (shrimp-like crustaceans), and sardines 

(FAO/WHO, 2011). These products include both raw and partially treated (heat treatment, high 

pressure) and thoroughly treated seafood products exposed to cross-contamination through 

contaminated utensils, hands, etc. Improper refrigeration of seafood contaminated with Vibrio may 

allow the proliferation of bacterial cells, with a corresponding increased risk of infection. 

Endogenous marine species of V. cholerae can be isolated from unprocessed fish during cholera 

outbreaks, although it is more likely for contamination of food to occur either using water containing 

http://en.wikipedia.org/wiki/Shrimp
http://en.wikipedia.org/wiki/Crustacean
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these bacteria (e.g. where sewage contamination has occurred) during processing or following 

manipulation by handlers carrying the pathogen (Lawley et al., 2008). Contaminated water used to 

make ice can lead to the contamination of beverages. In the industrial world, V. cholerae infections are 

usually associated with the consumption of seafood. Shellfish can become contaminated from 

environmental sources and most non-O1/O139 cholera infections are associated with the consumption 

of raw oysters. Other foods implicated in V. cholerae infections are fruit and vegetables, grains, meat 

and legumes (Lawley et al., 2008). 

Although thorough cooking destroys these organisms, oysters are often eaten raw and, at least in the 

US, are the most common food associated with V. parahaemolyticus infection (Hlady, 1997). At 

present, strains producing tdh and trh are considered pathogenic to humans (FAO/WHO, 2011). V. 

parahaemolyticus is an important source of foodborne disease, especially in Japan and other Asian 

countries. V. parahaemolyticus is part of the normal microflora of coastal and estuarine waters in 

almost all temperate regions and may be present in comparatively high numbers when the water 

temperature is at its highest during the summer. In Europe V. parahaemolyticus infections are rarely 

reported. However, a growing number of cases and outbreaks have been reported over the last year in 

Spain, Israel and Baltic region in relation to the warming of coastal waters (Baker-Austin et al., 2010). 

Humans are the main reservoir for V. cholerae and cholera is usually associated with poor hygiene and 

polluted water supplies, but may also be foodborne. Contamination of fruit, vegetables and other foods 

usually occur via an infected food handler, or by the use of polluted water in food preparation. Strains 

causing classic epidemic cholera generally belong to one of two serogroups, O1 or O139, although 

non-O1/O139 strains can cause a less severe form of diarrhoeal disease. These isolates are typically 

related to consumption of contaminated shellfish, especially raw oysters. Non-O1/O139 V. cholerae 

strains are common in certain estuarine waters and may be present on shellfish.  

V. vulnificus is an occasional cause of serious infections, which may sometimes be foodborne. 

However, wound infection following contact with the marine environment is more likely. V. vulnificus 

is now the leading cause of death in the USA related to consumption of seafood and is almost always 

associated with raw oysters from the Gulf of Mexico, which are thought to have a very high 

contamination rate. Only about 90 cases of V. vulnificus infection are reported each year in the USA 

and major outbreaks have not been recorded. Infections are rare and generally limited to individuals 

with pre-existing chronic illnesses, including those with liver disorders, or immunocompromised. In 

this cases of particular risk, V. vulnificus can invade through the intestinal barrier into the bloodstream 

causing primary septicaemia. As a result, V. vulnificus infections have the highest case/fatality rate 

(approx. 50 %) among foodborne pathogens (FAO/WHO, 2005). Elsewhere, sporadic cases have been 

identified in Europe, Korea and Taiwan. 

The dependence of Vibrio infections on the ingestion of large numbers of cells reduces the risk of 

infection associated with the contamination of seafood through seawater. The number of Vibrio cells 

on a product contaminated through seawater is expected to be low and, the risk of Vibrio illness from 

consumption of primary product may be considered primarily as low.  

However, the high growth rate of Vibrio species can result in a high risk of infection. Cases of illness 

caused by V. parahaemolyticus have occurred when seafood has been cross-contaminated by raw fish 

after cooking and growth of the bacterium has occurred following subsequently temperature abuse. 

Implicated seafood in outbreaks includes clams, oysters, scallops, shrimp and crab. V. 

parahaemolyticus has one of the shortest generation times of any bacterium (<10 min) with an 

optimum growth temperature of approximately 37 °C. Inappropriate temperature control of seafood 

can lead to a rapid increase in the number of viable Vibrio cells on contaminated products and there 

will be a high risk of causing disease. One of the largest outbreak of Vibrio illness in Europe was 

related to the use of contaminated seawater to chill boiled crabs (Martinez-Urtaza et al., 2005). The 

processor premise was located in an important seaport with heavy international traffic of cargo, cruise 

and fishing vessels, which may have introduced the pandemic V. parahaemolyticus through ballast 
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water. The circumstances involved in the processing of the crabs suggested that the potential sources 

of contamination were associated with the harbour water employed in post-processing management. 

Information regarding the effectiveness of common water disinfection treatments against pathogenic 

Vibrios remains scarce. Whereas some treatment systems have proved to be efficient in reducing the 

load of bacteria in water, evaluation of oxidising disinfectants have shown that chlorine and ozone are 

ineffective in preventing biofilm formation and in removing mature biofilms formed by Vibrio species 

in seawater and seafood premises (Shikongo-Nambabi et al.). Furthermore, attachment to particulate 

matter, aggregation, encapsulation of the pathogen, ingestion by protozoa, and water turbidity may 

affect chlorine efficacy (CDC, 2008). Chlorination of water used in blower tanks has been found 

inefficient for the elimination of V. cholerae from oysters during depuration (Motes, 1982). Rugose 

variants of V. cholerae O1 showed a high resistance to chlorination whilst retaining virulence (Morris 

et al., 1996). 

3.1.4.3. Adverse health effects and incidence 

Ingestion of a large number of viable cells is needed for pathogenic Vibrio spp. to survive the acidic 

environment of the stomach and establish an infection. Food matrix factors such as fat levels, acidity, 

salt content, and other characteristics can have a significant influence on the competence of Vibrio to 

cause disease. Other factors related to the host such as the general health status or physical stress can 

play an important role in the individual response to infections. The immune status, especially of those 

individuals who are immunocompromised can influence occurrence and/or severity of Vibrio diseases. 

Most of the pathogenic strains of V. cholerae and V. parahaemolyticus recovered from human 

infections possess specific traits. Virulent populations of V. cholerae and V. parahaemolyticus may be 

discriminated from non-virulent strains based on the presence of specific genetic markers or/and by 

their ability to produce major virulence factors. V. parahaemolyticus strains recovered from human 

gastroenteritis cases typically carry the thermostable direct haemolysin (tdh) gene, the tdh-related 

haemolysin (trh) gene, or both. These virulence markers occur infrequently in strains isolated from 

environmental sources and foods. Strains bearing tdh or trh genes represent less than 3 % of all V. 

parahaemolyticus strains isolated from the environment (Depaola et al., 1990). However, the relative 

abundance of pathogenic strains may be substantially higher in some areas and during certain times of 

the year (Rodriguez-Castro et al., 2010). V. cholerae infections are most often associated with strains 

belonging to O1 and O139 serotypes which generally possess the ctx gene and produce cholera toxin 

(CT) and are responsible for classic epidemic cholera. Non-O1/O139 V. cholerae strains can cause a 

less severe form of diarrhoeal disease. Epidemic cholera is confined mainly to developing countries 

with warm climates. The concentration of free-living choleragenic V. cholerae in natural aquatic 

environment is low, but V. cholerae is known to attach and multiply on planktonic organisms. While 

the virulence of V. vulnificus has been studied extensively, there is no one virulence marker that is 

definitively associated with human illness as tdh is with V. parahaemolyticus (Martinez-Urtaza et al., 

2010). 

A quantitative evaluation of the dose-response relationship between the levels of V. parahaemolyticus 

ingested and the frequency and severity of illness was conducted in FDA Risk Assessment (FDA, 

2005). The dose-response relationship for V. parahaemolyticus estimated from human clinical feeding 

trial studies and epidemiological surveillance data showed a predicted probability of illness of 

approximately 0.5 for a dose of approximately 100 million cfu, using the curve with the highest 

weight. This means that for every 100 servings at that dose level, approximately 50 individuals will 

become ill. At exposure levels of approximately 1,000 cfu, the probability of illness is relatively low 

(<0.001). The probability of illness approaches 1.0 (i.e., 100 % certainty of illness) at exposure levels 

around 1x10
9
 cfu. 

For O1/O139 cholera, symptoms can occur between 5 h and 6 days after infection. Dose-response 

curves show that a high dose of choleragenic V. cholerae O1 (10
6
) is normally needed to cause illness 

when choleragenic V. cholerae O1 are consumed in food (FAO, 2003). 
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3.1.4.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

Vibrios are naturally occurring organisms in marine environments and hence their presence in 

seawater does not correlate with indicators of faecal contamination. Despite their potential presence in 

coastal water, the risk of contamination of processed fishery products should be considered low where 

seawater is exclusively used in cleaning of premises and washing whole unprepared fish products. In 

these cases of low exposure, a specific criterion for Vibrio would not be considered applicable. 

However, the use of untreated seawater should be avoided in post-processing stages to enable the 

reduction of potential risks of Vibrio contamination, primarily in ready-to-eat products. In this sense, 

only potable water is recommended by the Codex Guidelines for Vibrio in Seafood (CAC/GL 73-

2010) to be used after cooking and blanching seafood products and in post-harvest stages. In those 

cases in which the use of seawater is applied in operations with a higher exposure (prepared and/or 

processed fishery products, rapid cooling of crustaceans and molluscs after their cooking and bottled 

seawater) an additional microbiological criterion for total Vibrio spp. would be applied to ensure the 

effectiveness of treatment systems in removing potential pathogenic vibrios from seawater.  

3.1.5. Listeria 

Listeria monocytogenes is a bacterium causing severe systemic infection in humans (Farber and 

Peterkin, 1991). The disease is predominantly transmitted by consumption of contaminated foods, and 

is one of the major causes of death from a preventable foodborne illness.  

3.1.5.1. Survival/growth in ice, fishery products and seawater 

The bacterium will grow between below 0 °C and 44 °C, at 10 % NaCl, over the pH range 5 to 9. 

D values have been reported as: 60 ºC range 2 to 17 minutes; 70 ºC 6-14 seconds; and 71.7 ºC 0.9 to 5 

seconds (Jay et al., 2005). Survival in seawater has been reported for a few days, but will be dependent 

on the temperature as well as amount of UV exposure (Bremer et al., 1998; Hansen et al., 2006; Hsu et 

al., 2005). Survival in frozen products is well documented, including in fishery products (Ritz et al., 

2008).  

In the EU summary report on trends and sources of zoonoses and zoonotic agents and food-borne 

outbreaks 2009 (EFSA and ECDC, 2011) 14 MSs reported data on findings of L. monocytogenes in 

ready-to-eat fish products. The products tested were mainly smoked fish. The presence of L. 

monocytogenes in fish products was detected in 12 out of 14 qualitative investigations. In 2009, a total 

of 2066 samples were tested qualitatively and 7.0 % were found positive for L. monocytogenes, 

compared to 9.8 % in 2008. Relatively high proportions of L. monocytogenes positive samples 

(qualitative examinations) were reported at retail by Slovenia with 35.0 % of 40 samples of smoked 

fish positive, and by Finland with 28.1 % positive of 64 samples of gravad fish products packaged in a 

vacuum or modified atmosphere. Five of 12 investigations reported levels of L. monocytogenes above 

100 cfu/g. Overall, 0.6 % of 1965 samples tested quantitatively were found to exceed the limit of 100 

cfu/g, compared to 0.5 % in 2008. The proportion of samples containing the bacteria above the limit of 

100 cfu/g ranged from 0.7 % to 2.5 % in samples of smoked fish from Slovenia. 

3.1.5.2. Data linking presence in seawater to food-borne illness  

L. monocytogenes is widespread in the environment and commonly occurs in surface waters (Colburn 

et al., 1990; Wilkes et al., 2011) which will consequently contaminate estuarine and coastal waters 

(Beleneva, 2011; Bou-m'handi et al., 2007; Colburn et al., 1990; El-Shenawy and El-Shenawy, 2006; 

El Marrakchi et al., 2005; Hansen et al., 2006; Rodas-Suarez et al., 2006; Rorvik et al., 1995). 

Consumption of contaminated processed fish and shellfish has been associated with transmission of 

infection (Brett et al., 1998; Ericsson et al., 1997; Facinelli et al., 1989; Farber et al., 2000; 

Lyytikainen et al., 2006; Misrachi, 1991; Mitchell, 1991; Riedo et al., 1994; Tham et al., 2000). The 

fish and shellfish implicated in disease transmission were processed, ready-to-eat, able to support the 

growth of this bacterium and likely to have been contaminated at the point of processing, although the 

presence of the bacterium in raw product can not be excluded as a source of contamination in food 
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processing environments. The faeces of wild birds is also a potential source of Listeria contamination 

in marine environments (Fenlon, 1985).  

3.1.5.3. Adverse health effects and incidence 

L. monocytogenes causes severe systemic illness especially to those of 60 years of age, the pregnant 

woman and unborn infant and immunocompromised: there has been an increase in the numbers of 

reports within the EU largely confined to those over 60 (Denny and McLauchlin, 2008). The EU 

summary report on trends and sources of zoonoses and zoonotic agents and food-borne outbreaks 2009 

(EFSA and ECDC, 2011) estimated over 1,380 cases reported within the EU, with a rate of 0.3 cases 

per 100,000 population in 2008. The proportion of cases attributable to the consumption of marine 

products in the EU is not known.  

3.1.5.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

L. monocytogenes is widespread in terrestrial environments and the major hazard is from 

contamination of processed ready-to-eat foods in production environments. The importance of 

contamination of seawater is probably minor and consequently this bacterium is not considered further 

in this document for inclusion in microbiological criteria.  

3.1.6. Clostridium botulinum 

Botulism is an intoxication caused by the ingestion of a potent neurotoxin which occurs in foods 

resulting from the germination and growth of Clostridium botulinum. The bacterium is a Gram-

positive, spore-forming rod whose spores are widely distributed in the environment. It can be present 

in processed food by contamination of raw materials or by post-processing contamination. The spores 

are heat-resistant and can survive in foods that are insufficiently processed. Seven serotypes (A-G) 

have been described (based on the neurotoxin antigenicity) but only types A, B, E and F are regularly 

associated with human foodborne botulism cases.  

3.1.6.1. Survival/growth in ice, fishery products and seawater 

The spores of C. botulinum are naturally distributed in the environment including water (fresh and 

seawater) and consequently are likely to contaminate fishery products. Spores have a high resistance 

to environmental stresses (heat, starvation, freezing, osmotic stress, drying) and their survival in water 

is extreme. C. botulinum type E is the most common type found in fresh water and marine 

environments. Types A and B are generally found on land, but may also be occasionally found in 

water. C. botulinum type E is part of the natural flora of aquatic environments and occurs in sediments 

of lakes, ponds and sea where anoxic conditions and carrion occur. C. botulinum type E can possibly 

multiply or at least, survive, in anoxic sediments. The presence of C. botulinum in water is usually as 

the result of low water levels (in ponds or shallow waters), disturbances of mud or sediments, or any 

condition that causes high fish mortality. There is also a significant correlation between off-shore 

bottom oxygen content, depth, and bioturbation activity with overall prevalence and spore counts of C. 

botulinum type E in aquatic sediments. C. botulinum spores in the sea are mainly confined to 

temperate and arctic aquatic environments. Several studies show that the predominant type in water is 

C. botulinum type E which, for example, was found in 81 % of sea and 61 % of freshwater samples, 

taken from aquatic environments of the Baltic Sea and Finnish mainland (Hielm et al., 1998b).  

3.1.6.2. Data linking presence in seawater to food-borne illness  

No reports are known linking botulism to water consumption although in theory waterborne botulism, 

from the ingestion of the pre-formed toxin, could occur. Water is not an appropriate environment for 

germination and toxin production 

C. botulinum type E has been isolated from fish gills, skin and intestines and of trout or salmon which 

can act as a transient carrier of spores (Alahuikku et al., 1977; Burns and Williams, 1975; Hielm et al., 

1998a; Hielm et al., 2002; Huss and Eskildsen, 1974; Pullela et al., 1998). Botulism outbreaks 
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associated with fish are usually linked to non-proteolytic Clostridium botulinum type E and have been 

reported in the northern and temperate regions. Type E has been frequently implicated in fishborne 

intoxications due to consumption of industrially processed raw smoked salmon and trout (Bach and 

Mueller-Prasuhn, 1971; Baumgart, 1970; Dressler, 2005; Hauschild and Gauvreau, 1985). Other C. 

botulinum types such as type A, B and C have also been occasionally isolated from fish (Austin and 

Dodds, 1996; Baker et al., 1990), but not linked to fishborne botulism. 

3.1.6.3. Adverse health effects and incidence 

Botulism intoxication onset usually starts 18 to 36 hours after ingestion of food containing the 

neurotoxin. Symptoms are due to the toxin binding the receptors on nerve endings and preventing the 

release of acetylcholine at the neuromuscular junction, which causes the progressive paralytic 

symptoms typical for botulism, such as weakness, double vision, vertigo, and progressive difficulty in 

speaking and swallowing. Difficulty in breathing, weakness of other muscles, abdominal distension, 

and constipation may also be progressive symptoms. 

An average of 450 outbreaks of foodborne botulism are reported annually worldwide (Hatheway, 

1995). Thirty-four per cent of the outbreaks were due to type A, 52 % to type B, and 12 % to type E. 

Countries with relatively high occurrences of foodborne botulism are China, Iran, the United States, 

Germany, France, Poland and Italy (Hauschild and Gauvreau, 1985; Hauschild, 1992). It is remarkable 

that a close association between the frequency and type of botulism outbreaks and the occurrence of C. 

botulinum in the environment has been shown (Dodds et al., 1989; Hauschild, 1989). C. botulinum 

type E is linked to fishborne outbreaks and it shows a high prevalence in cold or temperate regions of 

the northern hemisphere (Hauschild, 1992). 

3.1.6.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

The spores of C. botulinum are widely distributed and they show a geographical distribution. They can 

be present in seawaters coming from contaminated environments or where sediments are disturbed. 

Inclusion in the microbiological criteria seems unsubstantiated. 

3.1.7. E. coli causing intestinal illness 

Many warm-blooded animals, including humans carry Escherichia coli in their intestines as they are 

part of the normal gut flora. E. coli is a member of the coliform group, part of the family 

Enterobacteriaceae, and is facultative anaerobic, Gram-negative, non-spore-forming rod. Most E. coli 

are harmless, yet there are several types of E. coli strains that may cause gastrointestinal illness in 

humans. These types can be divided into several pathogroups: Enteropathogenic (EPEC), 

Enterotoxigenic (ETEC), Enteroinvasive (EIEC), Enterohaemorrhagic (EHEC), Enteroaggregative 

(EAEC) and Diffusely-adherent (DAEC) E. coli. 

3.1.7.1. Survival/growth in ice, fishery products and seawater 

The presence of pathogenic E. coli in seawater is associated with faecal contamination from the animal 

or human reservoirs. Their survival capacity in aquatic habitats is very variable as some of the cells 

can enter a viable but non-culturable status. Survival depends on factors such as amount of solar 

radiation, water temperature, presence of organic mater and adequate nutrients, presence of 

bacteriophages, autochthonous microbiota, protozoa predation, osmotic stress, etc. Adapted cells also 

show more survival capacity (Garcialara et al., 1993), and there is a genetic response of cells to the 

environmental challenges mentioned above (salinity, starvation, pH etc.), which is mostly mediated by 

the rpoS regulon (Rozen and Belkin, 2001). It should be noted that differences in resistance to 

environmental conditions between subgroups of E. coli have been reported. They occupy various 

ecological niches, and can be broadly characterized as either commensals or pathogens (van Elsas et 

al., 2011). It should be noted that faecal concentrations of the typical non-pathogenic E. coli, used to 

indicate recent faecal contamination, will always be greater than those of the pathogenic strains. 
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Several studies highlight that ETEC should be taken into consideration in endemic areas when 

assessing the role of marine environments as a source of enteric infection. 

3.1.7.2. Data linking presence in seawater to food-borne illness  

E. coli is a commonly found in the gastrointestinal tract of humans and animals and has traditionally 

been used as an indicator of faecal contamination when found in the environment, water or food. As 

an indicator, the presence of E. coli in a food implies that enteric pathogens may also be present. 

However, it has become evident that the presence or absence of faecal pathogens cannot be directly 

correlated with detection or apparent absence of indicator E. coli (Pierson et al., 2007). At best, the 

presence of E. coli in food or water is an indication of recent faecal contamination, poor hygiene and 

careless handling. Although E. coli is a reasonably good indicator for vegetative bacterial pathogens 

commonly found in fresh or sea water systems, it has proven to be a poor indicator of presence of 

pathogenic viruses and protozoa. 

Waterborne (fresh water) outbreaks of diseases caused by pathogenic strains of E. coli have been 

described, but no information is available linking seawater to E. coli outbreaks. 

3.1.7.3. Adverse health effects and incidence 

Depending on the type of E. coli, foodborne infection can present several different symptoms 

including abdominal cramps, watery or bloody diarrhoea, fever, nausea and vomiting, while 

enterohaemorrhagic E. coli (EHEC) can also cause haemorrhagic colitis and the haemolytic uremic 

syndrome (HUS).  

3.1.7.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

Enteropathogenic E. coli are a minor fraction of the species E. coli and their presence in seawater 

results from faecal contamination. This group of bacteria is present in seawater in very low numbers 

and has historically been assumed to die off rapidly in the seawater environment. Microbiological 

procedures for detection and enumeration of specific pathogroups of E. coli are impractical for use in 

routine monitoring of water and cannot be considered appropriate for inclusion in microbiological 

criteria. 

3.1.8. Thermophilic Campylobacter spp. 

Thermophilic Campylobacter spp. are excreted by all warm-blooded animals, and are widespread in 

the environment. Occurrence in sea water may result from direct or indirect faecal contamination from 

humans, mammals or birds, or indirectly through wastewater discharges, surface run-off or 

contaminated surface waters. Decimal reduction times in sea water are in the order of one to two days, 

but are greatly decreased by exposure to sunlight (Sinton et al., 2007).  

While farm animals and other mammals are usually colonised by the major human pathogenic species 

C. jejuni and C. coli, different species are typically found in wild birds, including C. lari, a rare human 

pathogen (Hughes et al., 2009). Sea gulls that feed on human waste have been reported to carry C. 

jejuni, although genetic differences with strains from humans and broiler chickens have been reported 

(Ramos et al., 2010). A group of water/wildlife isolates of C. jejuni was found to belong to a separate 

clade by multilocus sequence typing which are uncharacteristic of human food chain-associated 

isolates (Hepworth et al., 2011). 

3.1.8.1. Survival/growth in ice, fishery products and seawater 

Campylobacter spp. are susceptible to environmental stresses and their survival is typically less than 

indicator organisms as demonstrated e.g. by Sinton et al. (2007) for sunlight inactivation in seawater. 
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3.1.8.2. Data linking presence in seawater to food-borne illness  

In 2009, one of 16 verified food-borne outbreaks of campylobacteriosis was attributed to the 

consumption of crustaceans, shellfish, molluscs and products thereof. No outbreaks of 

campylobacteriosis have been linked to consumption of fish (EFSA and ECDC, 2011).  

3.1.8.3. Adverse health effects and incidence 

Thermophilic Campylobacter spp. may cause severe diarrhoeal illness in humans, which is 

characterised by acute enteritis and abdominal pain lasting for up to seven days or longer. Although 

such infections are generally self-limiting, complications can arise and may include bacteraemia, 

Guillain–Barré syndrome, reactive arthritis, inflammatory bowel disease, and irritable bowel 

syndrome (EFSA, 2011). 

Thermophilic Campylobacter spp. are the most frequently reported cause of diarrhoeal illness in the 

EU with approx. 200,000 reported cases in 2009 (EFSA and ECDC, 2011). It is estimated, however, 

that the true incidence of campylobacteriosis is approximately nine million cases per year. Handling 

and consumption of contaminated poultry meat is an important transmission pathway, accounting for 

20-30 % of all cases in the EU. Other established risk factors are raw milk, drinking water, and contact 

with animals. 50-80 % of all human cases are caused by strains that are genetically related to those in 

the chicken reservoir, while ruminants (cattle, sheep) also appear to be important reservoirs (EFSA, 

2010). A small fraction of human strains are genetically related to those isolated from wild birds or 

water.  

3.1.8.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

There is little evidence to support seawater as a significant source of campylobacteriosis. In most 

circumstances any criteria for faecal indicator bacteria should indicate the likelihood of 

Campylobacter contamination. A separate criterion for Campylobacter is not considered necessary. 

3.1.9. Staphylococcus aureus 

Staphylococcus is a genus of Gram-positive bacteria which are natural residents of a wide range of 

mammals. Staphylococci show host specificities and S. aureus is a common resident of the skin and 

naso-mucosal flora of humans.  

3.1.9.1. Survival/growth in ice, fishery products and seawater  

S. aureus is environmentally resistant and will survive and grow in high concentrations of salt: 

generally up to 15 % but growth may occur at 20 % under some conditions. Contamination and growth 

in some seafood have been associated with staphylococcal foodborne disease, although the presence of 

S. aureus in food results in almost all instances from food handlers and more occasionally from 

animals. The bacterium survives freezing, including freezing in seafood products (Sommers and 

Rajkowski, 2011).  

3.1.9.2. Data linking presence in seawater to food-borne illness  

Since S. aureus is associated with carriage in humans, the bacterium occurs as a result of human 

activities. S. aureus (including meticillin-resistant S. aureus) has been recovered from seawater as a 

result of human bathing activities (Plano et al., 2011). 

3.1.9.3. Adverse health effects and incidence 

S. aureus causes a range of skin and soft tissue infections as well as more severe systemic disease. 

Food poisoning is caused by the production of enterotoxins in food prior to consumption.  
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3.1.9.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

Since S. aureus in food most often results from food handlers, the importance of contamination of 

seawater is probably minor and consequently this bacterium is not considered further in this document 

for inclusion in microbiological criteria.  

3.1.10. Shigella 

Shigella is a genus within the Enterobacteriaceae and comprises four species (S. dysenteriae, S. 

flexneri, S. boydii and S. sonnei) and is most closely related to the genus Escherichia. Shigella are 

human adapted and produce a range of mild to severe enteric infections, as well as more severe 

illnesses.  

3.1.10.1. Survival/growth in ice, fishery products and seawater 

Shigella are excreted in large numbers in human faeces during infection and drinking of contaminated 

fresh water is an important route of infection, particularly in parts of the world where untreated 

sewage is discharged into water courses (Niyogi, 2005). Freshwater fish may become contaminated 

from human sewage (Onyango et al., 2009) and survival for several days can occur in seawater (Wait 

and Sobsey, 2001) where seawater, marine fish and filter-feeding shellfish may become contaminated 

(Livingstone, 1969; Ristori et al., 2007). Survival in ice is likely to occur. 

3.1.10.2. Data linking presence in seawater to food-borne illness 

Contamination of freshwater with Shigella is important in human disease transmission, therefore 

prevention of contamination of foods (including seafood) is important for disease control. However, 

person-to-person transmission also occurs (Niyogi, 2005). 

3.1.10.3. Adverse health effects and incidence 

Shigellosis (bacterial dysentery) ranges in severity from mild watery diarrhoea to severe illness 

accompanied by febrile convulsions. The severity of illness is associated with the species involved. 

Infection with S. dysenteriae is usually most severe and some cases are also associated with the 

haemolytic uremic syndrome. Infection with S. flexneri and S. boydii can also be severe but S. sonnei 

in an otherwise healthy person generally presents as a few loose stools and abdominal discomfort. 

Shigellosis is also occasionally associated with reactive arthritis (Reiter‘s Syndrome).  

In 2009, 7,182 confirmed case were reported in the EU, with an overall rate of 1.63 cases per 100,000 

population. Shigellosis continues to be most prevalent in children under five years old and travel-

associated cases, predominantly to regions outside of EU/EEA, were more frequently reported than 

indigenous cases (ECDC, 2011). Since Shigella is exclusive to humans, infection is spread by the 

faecal-oral route, either by direct person-to-person contact, or via contaminated food or water. 

3.1.10.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

Foodborne Shigella infection results from contamination of foods directly or indirectly with human 

faeces either through contamination of water or via food handlers. Contamination of seawater is 

probably of minor importance as a route of transmission, and indicator organisms are likely to provide 

a better indication of human faecal contamination. Consequently this bacterium is not considered 

further in this document for inclusion in microbiological criteria.  

3.1.11. Aeromonas 

Aeromonas species (aeromonads) are ubiquitous and globally occurring aquatic organisms. 

Environments in which they have been detected include drinking and wastewater, the ground, 

surfaces, and marine water bodies. The optimum growth temperature for Aeromonas spp. is 22 to 
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35 °C, with an extended temperature range of 0 to 45 °C for some strains. The optimum pH range is 

from 5.5 to 9.0; a wider range of 4.5 to 9.0 is tolerated. Optimum NaCl concentration is from 0 to 4 %. 

There is evidence that some species are pathogenic for humans, warm-blooded and cold-blooded 

animals, including domestic animals and birds. Only A. hydrophila, A. veroni biovar sobria and A. 

caviae are commonly isolated from clinical sources worldwide. 

3.1.11.1. Survival/growth in ice, fishery products and seawater 

Aeromonas spp. have been detected in a variety of foods, including raw produce, raw meat, seafood, 

ready-to-eat meat, dairy products, and treated drinking water. They are part of the normal microbiota 

of healthy animals and humans and are found at high levels in sewage (USEPA, 2006). Aeromonas 

may be ingested from water and food through the environment, but most host-microbe interactions do 

not result in disease. The main source of Aeromonas infection is water (including chlorinated water) 

and seafood products (D‘Sa and Harrison, 2010). Other food products that also may contain 

enteropathogenic Aeromonas include poultry, raw meat, raw milk or vegetables (Burke et al., 1984a; 

Burke et al., 1984b). 

In general, Aeromonas spp. do not tolerate salinities above 5 % NaCl but a few isolates tolerating 6 % 

have been reported (Knochel, 1990). At chill temperatures, competitive growth is not expected at 

levels above 3 %-4 % NaCl and a few isolates may be sensitive to concentrations as low as 2 % NaCl 

at sub-optimal conditions such as chill temperatures (Knochel, 1990). A few strains have been 

reported to be unable to grow at salt levels below 0.3 % (Palumbo et al., 1985). 

Detection of aeromonads in water is also influenced by temperature and residual chlorine levels which 

should be greater than 15 °C and less than 0.2 mg/l respectively. The tendency of the cells to form 

biofilms makes accurate determination of their numbers in water systems a difficult task (USEPA, 

2006). 

Aeromonads are inactivated by commonly used disinfectants used in water treatment and by routinely 

used food processing and preparation methods. A. hydrophila is quite sensitive to many factors such as 

temperature (heating), pH, NaCl, oxygen, phosphates, etc. However, some strains of A. hydrophila 

show resistance to the usual chlorine concentrations used for treatment of drinking water (0·1–0·3 

mg/l) (Massa et al., 1999). High levels of chlorine (50 μg/ml) have been proved efficient to reduce the 

levels of A. hydrophila in tomatoes (Velazquez et al., 1998). 

3.1.11.2. Data linking presence in seawater to food-borne illness  

A. hydrophila is a widespread representative of this genus found in water, water habitants, domestic 

animals and foods. A. hydrophila has been isolated from a wide range of both animal and plant food 

products, including raw red meat, poultry, fin fish, seafood, dairy products, vegetables and 

miscellaneous foods (Palumbo, 1996).  

As a common inhabitant of water sources, drinking or mineral water can be a possible source of 

exposure for humans. In accordance with the Safe Drinking Water Act, A. hydrophila is listed in the 

Environmental Protection Agency‘s (EPA) first and second Contaminant Candidate List as a 

―potential waterborne pathogen‖.  

A. hydrophila is frequently found in seafood. Wang and Silva (1999) found that from 238 channel 

catfish fillets, 36.1 % were contaminated with this bacterium. The incidence of this pathogen 

contamination was higher in the summer than other seasons. Results of a study of fresh fish from 

commercial outlets in France, Great Britain, Greece and Portugal (Davies et al., 2001) reported that A. 

hydrophila was detected in all these countries, with an overall incidence of 40 %. Incidences of A. 

hydrophila of 19 %, 28 %, 90 % and 22 % have been reported in fish samples from UK, New Zealand, 

Switzerland and Taiwan, respectively (Fricker and Tompsett, 1989; Gobat and Jemmi, 1993; Hudson 

et al., 1992; Tsai and Chen, 1996). 
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Abeyta et al. (1989) found that A. hydrophila in shellfish growing waters ranged from three to 4600 

cells/100 g in oysters and from three to 2400 cells/100 ml in water. Colburn et al. (1989) studied the 

microbiological quality of oysters (Crassostrea gigas) and water of live holding tanks at five different 

Seattle area retail markets. A. hydrophila was the most frequently isolated potential pathogen in this 

study with a higher incidence in oysters (78 %) compared to water (53 %). 

3.1.11.3. Adverse health effects and incidence 

Evaluation of aeromonads as potential pathogens of foodborne origin dates back to the 1950s, 

following their isolation from humans. Their presence in water sources and raw and ready-to-eat foods 

supports their potential to cause outbreaks of foodborne disease under some circumstances. The most 

implicated species in human disease are A. hydrophila (48 %), followed by A. sobria and A. caviae 

(about 25 % each) (D‘Sa and Harrison, 2010). 

Aeromonas species are putative human pathogens causing gastrointestinal and other infections in 

healthy and immunocompromised hosts. The role of these bacteria in foodborne diseases is not firmly 

established, but Aeromonas spp. have been proposed as a potential emerging foodborne pathogens 

(Daskalov, 2006). 

3.1.11.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

With limited general evidence identifying Aeromonas as causative agent of foodborne illness, a 

specific microbiological criterion for this bacterium is not considered necessary. 

3.1.12. Plesiomonas 

Plesiomonas shigelloides is a pathogenic bacterium native to aquatic animals and environments. Its 

metabolism is similar to that of the genus Vibrio in that sugars are fermented with acid production but 

no gas. This organism has been isolated from cases of human diarrheal illness, and is also suspected to 

be the cause of other generalized human infections (D‘Sa and Harrison, 2010). 

P. shigelloides grows optimally at 30 to 35 °C, as low as 10 °C, and at a pH as low as 4.5 (Jay et al., 

2005). Most isolates exhibit growth from 2.0 % to 3.0 % NaCl. Some strains have been found to grow 

in 5.0 % NaCl (Miller and Koburger, 1986). NaCl, however, is not an absolute requirement for growth 

(Janda and Abbott, 1999). 

3.1.12.1. Survival/growth in ice, fishery products and seawater 

The primary habitats of P. shigelloides are fresh-water ecosystems (rivers, lakes, and surface waters) 

and marine estuaries in tropical and temperate climates (Monteil and Harf-Monteil, 1997). In aquatic 

systems, P. shigelloides occurs as free-living cells which can contaminate fish, crabs, shrimp, mussels, 

and oysters (Huber et al., 2004; Oxley et al., 2002; Schubert, 1984). It has been detected in association 

with river fish (Jay et al., 2005). 

3.1.12.2. Data linking presence in seawater to food-borne illness 

Plesiomonas has been isolated from surface waters (especially in warm weather), tap water, soil, fish, 

shellfish and aquatic species (Abbott et al., 1991), as well as from the intestinal contents of animals 

(Arai et al., 1980). Oysters are the major food incriminated in outbreaks in the United States (Levin, 

2008). 

The first outbreak of gastroenteritis due to P. shigelloides occurred in Japan in 1963 (Ueda et al., 

1963) and was due to contaminated cuttlefish salad involving 275 cases of diarrhoeal infection out of 

870 individuals who consumed the salad. Salted mackerel resulted in an outbreak in 1966 in Japan 

involving 53 cases (Hori and Hayashi, 1966). Subsequent outbreaks involved waterborne diarrhoea 

affecting 978 out of 2141 persons in Japan (Tsukamoto et al., 1978) and various other waterborne 

outbreaks (CDC, 1998; Medema and Schets, 1993) and oyster consumption (Rutala et al., 1982). 
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Uncooked shellfish have been found to be the most important sources of foodborne illnesses from P. 

shigelloides (Holmberg et al., 1986).  

3.1.12.3. Adverse health effects and incidence 

P. shigelloides produces a heat-stable enterotoxin, but based on a lack of consistent in-vitro and in-

vivo evidence, the species is considered to possess low pathogenicity (Abbott et al., 1991). Some 

researchers believe that the organism is an opportunistic pathogen, posing a significant risk in 

immunocompromised patients or in those with pre-existing illness (D‘Sa and Harrison, 2010).  

3.1.12.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

With limited evidence that Plesiomonas can cause food-borne illness, typical foodborne pathogen 

intervention methods are effective in inactivating P. shigelloides in foods. The lack of evidence 

linking contamination of food and subsequent illness in humans supports that the organism probably 

poses little risk and therefore is not considered further in this document for inclusion in 

microbiological criteria. 

3.1.13. Cryptosporidium, Giardia, and Toxoplasma 

Eukaryotic parasites, particularly protozoan parasites, represent hazards to humans through exposure 

via marine environments. The major protozoan hazards and Cryptosporidium, Giardia, and 

Toxoplasma: all of which have complex life cycles within a variety of hosts and which produce cysts 

(oocysts) which have varying degrees of environmental robustness and allow survival (but not growth) 

outside their hosts in the environment.  

Cryptosporidium is a genus of protozoan parasites which comprises 19 species and more than 44 

genotypes, many of which are unlikely to be infectious to humans (Jex et al., 2011): the life cycle is 

monoxenous (occurs within a single host) and results in oocysts excreted into the environment via the 

faeces of infected animals which are immediately infectious. 

Giardia is a genus of flagellate protozoan parasites of vertebrates and more than 50 species, many of 

which are unlikely to be infectious to humans (Thompson, 2011): the life cycle is monoxenous and 

results in cysts excreted into the environment via the faeces of infected animals which are immediately 

infectious. 

Toxoplasma gondii is a species of protozoan parasite (Dubey, 2011). The life cycle requires 

intermediate hosts (livestock, birds and wild animals) and a definitive host (cats and other felines). 

Oocysts are excreted from the definitive host into the environment via the faeces and require a 

maturation period before becoming infectious (Fayer et al., 2004).  

Other parasites (including Sarcocystis, Isospora, Cyclospora, Entamoeba, and species of 

microsporidia) may represent similar risks but are less well understood. 

3.1.13.1. Survival/growth in ice, fishery products and seawater 

All parasite cysts, particularly the oocysts of Cryptosporidium and Toxoplasma, show considerable 

resistance to chemical disinfectants (Dawson, 2005; Laberge and Griffiths, 1996) and are extremely 

robust in aquatic environments. Mild heat treatments (71.7 for 15 seconds) are effective killing steps, 

and some limited survival may occur in ice or at freezing temperatures (Dawson, 2005; Deng and 

Cliver, 1999; Fayer, 1994). (Oo)cysts of Cryptosporidium, Giardia and Toxoplasma are relatively 

sensitive to UV radiation both in the environment from sunlight and as a water treatment process 

(Dawson, 2005; Ware et al., 2005).  
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3.1.13.2. Data linking presence in seawater to food-borne illness  

Very large numbers of cryptosporidial oocysts can occur in the faeces of infected animals (up to 10
9
/g) 

and inputs into marine environments can occur via freshwater (Fayer et al., 2004) from human sewage 

and bathers (both C. parvum and C. hominis; (Graczyk et al., 2007), from livestock, domestic and wild 

animals including rodents (C. parvum). Cryptosporidium has been detected in marine mammals 

(Hughes-Hanks  et al., 2005; Rengifo-Herrera  et al., 2010) although their infectiousness to humans is 

poorly understood, however C.hominis has been detected in a dougon in Australia (Morgan  et al., 

2000). Outbreaks associated with contaminated drinking water have been reported world-wide (Fayer  

et al., 2004; LeChevallier and Moser, 1995). 

C. parvum oocysts can be concentrated by filter-feeding shellfish and survive for at least 30 days 

(Giangaspero  et al., 2005; Graczyk  et al., 2006; Graczyk  et al., 2007; Guiguet Leal  et al., 2008). 

Oocysts have been shown to survive for at least 12 months in seawater (Tamburrini and Pozio, 1999), 

but will be affected by temperature, salinity and amount of UV light (Nasser  et al., 2007). The 

presence of Cryptosporidium oocysts will be dependent on the amount of faecal contamination, for 

example, in a site in Mexico oocysts where detected in more than 83 % of the samples at a 

concentration range of 150 to 2,050 oocysts/10 L (Magana-Ordorica  et al., 2010). Because of the 

extreme persistence of Cryptosporidium oocysts in marine environments, these may persist in the 

absence of bacteria indicators of faecal contamination (Abdelzaher  et al., 2010; Graczyk  et al., 2010; 

Wilkes  et al., 2011).  

Inputs of Giardia cysts into marine environments can occur via freshwater (Fayer  et al., 2004) from 

human sewage and bathers (both G. duodenalis and G. enterica), from livestock, dogs, cats and wild 

animals including rodents (G. duodenalis) and from dogs and some wild animals (G. enterica). 

Giardia has been detected in marine mammals  (Hughes-Hanks  et al., 2005) although their infectious 

to humans in poorly understood. Outbreaks associated with contaminated drinking water have been 

reported world-wide (LeChevallier and Moser, 1995). 

Giardia cysts can be concentrated by filter-feeding shellfish and survive for at least 14 days (Graczyk  

et al., 2006; Graczyk  et al., 1999). The presence of Giardia cysts will be dependent on the amount of 

faecal contamination, for example in a site in Mexico, cysts where detected in more than 70 % of the 

samples at a concentration range of 10-300 cysts/10 L (Magana-Ordorica  et al., 2010).  

Toxoplasma gondii oocysts can occur in both fresh and seawater (Lindsay  et al., 2003). Inputs of 

oocysts into marine environments can occur via freshwater from the faeces of felines (Fayer  et al., 

2004) which can infect mammals living in the sea such as sea otters, dolphins and walruses (Conrad  

et al., 2005; Massie  et al., 2010). Outbreaks associated with contaminated drinking water have been 

reported (Aramini  et al., 1999; Bowie  et al., 1997; de Moura  et al., 2006). 

T. gondii oocysts can be concentrated by filter-feeding shellfish and survive for several months 

(Lindsay  et al., 2004; Lindsay  et al., 2001). Survival can occur in filter-feeding fish (Northern 

anchovies and Pacific sardines) where oocysts persisted in their alimentary canals for at least 8h 

(Massie  et al., 2010). Oocysts have been shown to survive for at least 6-24 months in seawater 

(Lindsay  et al., 2003; Lindsay and Dubey, 2009).  

Cryptosporidium, Giardia and Toxoplasma (oo)cysts will occur in animal faeces together with 

bacteria used as faecal indicators. However, because the protozoal (oo)cysts can persist longer than the 

indicators in marine environments, these may occur in the absence of detectable bacteria indicators of 

faecal contamination (Abdelzaher  et al., 2010; Graczyk  et al., 2010; Wilkes  et al., 2011).  

3.1.13.3. Adverse health effects and incidence 

Within the genus Cryptosporidium, the major human pathogens are Cryptosporidium parvum and 

Cryptosporidium hominis which cause acute diarrhoea amongst the immunocompetent, particularly 
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amongst children under 5 years of age (Jex  et al., 2011). Infections can be life-threatening in the 

immunocompromised, particularly those with AIDS.  

Within the genus Giardia, the major human pathogens are Giardia duodenalis and Giardia enterica 

which cause a range of disease severity amongst the immunocompetent from asymptomatic infection 

to acute diarrhoea (Thompson, 2011).  

Toxoplasmosis is widespread in humans and infection rates have been estimated to be 16-40 % in the 

UK and USA to 50-80 % in continental Europe, Central and South America. The majority of cases are 

sub-clinical amongst the immunocompetent, but there is increasing evidence that acquired 

toxoplasmosis can result in retinochoroiditis in a small proportion of infected persons (Gilbert and 

Stanford, 2000; Jones and Holland, 2010). Congenital infection can result in mild to serious disease 

(abortions and foetal deaths, retinochoroiditis, hydrocephalus, convulsions and intracerebral 

calcification) with lifelong disability (Dubey, 2011). Infections can be life-threatening in the 

immunocompromised, particularly those with AIDS where this parasite has been estimated to 

responsible for 10-30 % of deaths.  

3.1.13.4. Conclusion on importance in seawater in comparison to other sources and possible inclusion 

in microbiological criteria 

The cysts of protozoan parasites occur in aquatic environments as a result of faecal contamination 

(from both humans and other animals) and represent a hazard. However, contamination of seawater is 

probably of less importance than other routes of transmission. Since it is not possible, or technically 

difficult to grow these organisms in the laboratory, detection methods are difficult to perform, labour 

intensive and slow. Indicator organisms of faecal contamination are likely to provide an indication of 

recent faecal contamination, including the potential presence of pathogenic protozoa. Consequently 

this group of organisms is not further considered further in this document for inclusion in 

microbiological criteria.  

3.2. Chemical hazards 

EC Regulation 853/2004
9
 requires the use of water of potable water quality by food business operators 

during food production. Criteria for the quality of potable water are laid down in Annex I, part B of 

Council Directive 98/83/EC
12

 on the quality of water intended for human consumption (see Table 5, 

Appendix A, Current EU legislation) and in Commission Directive 2003/04/EC
13

 establishing the list, 

concentration limits and labelling requirements for the constituents of natural mineral waters. 

Therefore a short description of the chemical hazards for the parameters included in these Directives is 

provided below. These chemical hazards are distinguished into a) inorganic chemicals and b) organic 

chemicals. Because it is stated in Council Directive 98/83/EC
12

 that the standards in Annex I of this 

Directive are generally based on the World Health Organisation‘s ‗Guidelines for drinking water 

quality‘, the respective WHO guideline values have also been included. 

3.2.1. Inorganic chemicals 

3.2.1.1. Antimony 

Elementary antimony is found in alloys with copper, lead and tin. It is a normal raw water 

contaminant. The toxicity of antimony depends on its valency state. Most of the antimony leached 

from antimony containing materials would be in the form of antimony (V), which is the less toxic 

form. Although there is some evidence for the carcinogenicity of certain antimony compounds by 

inhalation, there are no data indicating that antimony might be carcinogenic by the oral route of 

exposure (WHO, 2011). The WHO established a Tolerable Daily Intake (TDI) for antimony of 6 μg/kg 

body weight (b.w.). Using an allocation of 10 % of the TDI to drinking water and assuming 

                                                      
13  Commission Directive 2003/04/EC of the European Parliament and of the Council of 28 January 2003 on public access to 

environmental information and repealing Council Directive 90/313/EC. OJ L 41, 14.2.2003, p. 26-32. 
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consumption of two litres of drinking water by a 60 kg adult, a guideline value for antimony of 

0.02 mg/l has been derived (WHO, 2004). 

3.2.1.2. Arsenic 

Arsenic is a metalloid that occurs in different inorganic and organic forms, which are found in the 

environment both from natural occurrence and from anthropogenic activity. Inorganic arsenic is more 

toxic as compared to organic arsenic. The Panel on Contaminants in the Food Chain recently evaluated 

the risks of arsenic in food (EFSA Panel on Contaminants in the Food Chain (CONTAM), 2009f). The 

main toxic effects reported to be associated with long term ingestion of inorganic arsenic in humans 

are skin lesions, and skin, lung and bladder cancer, effects that have been associated with high levels 

of arsenic in drinking water from wells in regions rich in arsenic in the earth‘s crust. Also acute 

neurotoxicity has been associated with high levels of arsenic in drinking water (well water). The 

International Agency for Research on Cancer (IARC) has classified arsenic as carcinogenic to humans 

(class I) (IARC, 2004). The CONTAM Panel noted that inorganic arsenic is not directly DNA-reactive 

and there are a number of proposed mechanisms of carcinogenicity such as oxidative stress, epigenetic 

effects and interference with DNA damage repair, for each of which a threshold mechanism could be 

postulated. The CONTAM Panel modelled the dose-response data from the key epidemiological 

studies and compared the outcome with the estimated dietary exposures to inorganic arsenic for 

average and high level consumers in Europe. Based on this assessment it was concluded that there is 

little or no margin of exposure and that the possibility of a risk to some consumers cannot be excluded. 

Therefore the CONTAM Panel recommended that dietary exposure to inorganic arsenic should be 

reduced. 

The WHO (2004) derived a provisional guideline value for arsenic in drinking water of 0.01 mg/l. 

This guideline was designated provisional on the basis of treatment performance and analytical 

achievability.  

3.2.1.3. Barium 

Barium is present as a trace element in igneous and sedimentary rocks. Barium in water stems 

primarily from these natural sources. Food is the primary source of intake for the non-occupationally 

exposed population, but when concentrations of barium in water are high, drinking water may 

contribute considerably to the total intake. There is no evidence that barium is mutagenic or 

carcinogenic. The toxicological endpoint of concern to humans is its potency to raise blood pressure. 

Based on the most sensitive epidemiological study addressing this endpoint the WHO (2004) derived a 

guideline value of 0.7 mg/l. 

3.2.1.4. Boron 

Boron is naturally occurring in (ground) water as a result of leaching from rocks and soils containing 

borates and borosilicates. Oral toxicity studies in experimental animals have indicated that the 

developmental toxicity is the main endpoint. Boron is not genotoxic and long-term studies in rats and 

mice did not provide evidence for a carcinogenic potential. The Panel on Dietetic Products, Nutrition, 

and Allergies (NDA) has derived the following tolerable upper intake level (UL) values for boron: 

10 mg boron/person/day for adults and 3, 4, 5, 7 and 9 mg boron/day for children aged 1-3, 4-6, 7-10, 

11-14, and 15-17 years of age, respectively. These UL values apply to the intake of boron in the form 

of boric acid and borates (EFSA, 2004). The WHO (2009) established a TDI of 0.17 mg/kg b.w. and 

derived a guideline value of 2.4 mg/l (WHO, 2011). 

3.2.1.5. Bromate 

Bromate is not normally found in water but can occur as a result of ozonation when bromide ions are 

present in the water. Bromate is mutagenic, both in vitro and in vivo and it has been proposed that this 

might be due to oxidative DNA damage (WHO, 2011). There is inadequate evidence for 

carcinogenicity of bromate in humans, but bromate induced kidney tumours in experimental animals. 

Oxidative stress may play a role in the formation of renal tubule tumours, but current information is 
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insufficient to identify lipid peroxidation and production of reactive oxygen species (ROS) as key 

events in the induction of these tumours). IARC (1999a) has classified bromate in group 2B, possibly 

carcinogenic to humans. The WHO used the increased incidence of mesotheliomas, renal tubule 

tumours and thyroid follicular tumours, observed in a long-term drinking water study in rats, to derive 

a health-based guideline value for bromate in drinking water. Based on low-dose extrapolation the 

health based value associated with the upper-bound excess cancer risk of 10
-5

, is 2 μg/l (WHO, 2004). 

Because of limitations in the available analytical and treatment methods the provisional WHO 

guideline value for bromate is 10 μg/l (WHO, 2004). This value has recently been reconfirmed (WHO, 

2011). 

3.2.1.6. Cadmium 

Cadmium (Cd) is a heavy metal found as an environmental contaminant, both through natural 

occurrence and from industrial and agricultural sources. Foodstuffs are the main source of cadmium 

exposure for the non-smoking general population. Cadmium has recently been evaluated by the 

CONTAM Panel (EFSA, 2009e). It is primarily toxic to the kidney, especially to the proximal tubular 

cells where it accumulates over time and may cause renal dysfunction. Beta-2-microglobulin (B2M), a 

low molecular weight protein which is found in urine, is recognised as the most useful biomarker in 

relation to tubular effects. 

Cadmium levels in urine are widely accepted as a measure of the body burden of Cd and the 

cumulative amount in the kidneys. The CONTAM Panel carried out a meta-analysis on a large set of 

epidemiological studies to evaluate the dose-response relationship between urinary cadmium and 

urinary B2M. A mathematic model was fitted to the dose-response relationship between urinary 

cadmium and B2M for subjects over 50 years of age and for the whole population. From the model, a 

benchmark dose lower confidence limit for a 5 percent increase of the prevalence of elevated B2M 

(BMDL5) of 4 µg Cd/g creatinine was derived. A chemical-specific adjustment factor of 3.9, to 

account for inter-individual variation of urinary cadmium within the study populations, was applied, 

leading to a value of 1.0 µg Cd/g creatinine.  

The CONTAM Panel estimated that the dietary Cd exposure that corresponds to the critical urinary 

cadmium concentration of 1 µg/g creatinine after 50 years of exposure was 0.36 µg Cd/kg b.w., 

corresponding to a weekly dietary intake of 2.52 µg Cd/kg b.w. The mean exposure for adults across 

Europe is close to, or slightly exceeding, the TWI of 2.5 µg/kg b.w. Although the risk for adverse 

effects on kidney function at an individual level at dietary exposures across Europe is very low, the 

CONTAM Panel concluded that the current exposure to Cd at the population level should be reduced 

(EFSA, 2009e). 

In 2004, the WHO used a provisional tolerable weekly intake (PTWI) of 7 μg/kg b.w., an allocation of 

10 % of the PTWI, and a consumption of two litres of drinking water per day for a 60 kg adult, to 

derive a guideline value for cadmium in drinking water of 0.003 mg/l (WHO, 2004). This value was 

reconfirmed in 2011 (WHO, 2011).  

3.2.1.7. Chromium 

Chromium is a widely distributed natural element. It can exist in different valences of +2 to +6 

(chromium II to VI). Chromium III is an essential element. The toxicological database of chromium is 

limited. Chromium III is not genotoxic, but chromium VI is genotoxic in a wide range of in vitro and 

in vivo tests (WHO, 2011). In a long-term oral carcinogenicity study in rats given chromium III, no 

increase in tumour incidence was observed. Chromium VI is carcinogenic following inhalation 

exposure. IARC (1990, 2011) has classified chromium VI in group I (human carcinogen) and 

chromium III in group 3 (not classifiable as to its carcinogenicity to humans). It should be noted that 

chromium VI is reduced to chromium III in the stomach and the gastrointestinal tract (WHO, 2011). 

As a ‗practical measure‘ a provisional guideline value of 0.05 mg/l has been derived by WHO (2004) 

for total chromium.  
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3.2.1.8. Copper 

Copper is a widely distributed natural element and an essential nutrient. It serves as co-factor for many 

important metalloproteins such as cytochrome oxidase, copper-zinc dismutase, ceruloplasmin and 

tyronase. Food and drinking water are the primary sources of exposure of humans. However, high 

copper intake may lead to copper toxicosis primarily affecting the liver, the kidneys and the 

gastrointestinal tract as indicated in an external report to EFSA.
14

 The most sensitive acute adverse 

effects of copper are gastrointestinal effects (WHO, 2004, 2011). These effects formed the basis for 

the derivation of the guideline value of 2 mg/l by the WHO to protect people with a normal copper 

homeostasis against acute gastrointestinal effects. It was however noted that there are uncertainties 

regarding the long-term effects in sensitive populations, such as patients suffering from Wilson disease 

or other metabolic disorders (WHO, 2004, 2011). 

3.2.1.9. Cyanide 

Cyanide is only occasionally found in drinking water but usually at very low concentrations (WHO, 

2011). Cyanide is highly acutely toxic. Oral lethal doses for cyanide expressed as CN
-
 in rats and dogs 

are 4-6 and 2 mg/kg b.w., respectively (EFSA, 2007). Cyanide ion (CN
-
) binds to cytochrome oxidases 

in the mitochondria, thereby inhibiting the intracellular oxidative processes. This leads to death 

through hypoxia. The organ that is most sensitive to cyanide toxicity is the brain. According to the 

WHO (2011) data on acute toxicity are unsuitable for deriving a health-based value for short-term 

exposure.  

Based on effects on reproductive organs in a 13-week oral toxicity study a TDI of 0.045 mg/kg b.w. 

was established. Allocating 40 % of the TDI to drinking water and assuming a 60 kg adult drinking 

two litres of water per day, a health based value of 0.5 mg/l (rounded value) for short-term exposure 

was derived (WHO, 2011). It was noted that the lowest reported odour threshold for cyanide in 

drinking water of 0.17 mg/l was below this health-based value. Since cyanide concentrations in 

drinking water are ‗well below those of health concern‘ it was concluded that derivation of a formal 

guideline value for short-term exposure was not necessary (WHO, 2011).  

3.2.1.10. Fluoride 

Fluorides are widely distributed in earth‘s crust and can be found in minerals such as fluorspar, 

cryolite and fluorapatite. Fluoride might be an essential element for humans, although this has not 

been demonstrated unequivocally. There is evidence that fluoride plays a role in the prevention of 

dental caries. Epidemiological studies with fluoride in drinking water has indicated that the minimum 

concentration to produce these protective effects is about 0.5 mg/l, and that the degree of protection 

may increase up to concentrations of 2 mg/l. The therapeutic margin is however small, since, 

depending on the amount of drinking water consumed, mild dental fluorosis can be observed from 

about 1 mg/l onwards. More serious effects such as skeletal fluorosis may be observed at 

concentrations in the range of 3-6 mg fluoride/l. Available studies indicate that the evidence for a 

carcinogenic potential of fluoride in experimental animals is inconclusive and that there is no evidence 

for carcinogenicity in humans. Overall, the WHO concluded that there was no reason to revise the 

previously derived guideline value of 1.5 mg/l (WHO, 2011). 

The NDA Panel derived the following tolerable upper intake level (UL) values: 7 mg fluoride per day 

for the population of 15 years and older (adults) and 5 mg fluoride per day for children of 9 to 14 years 

of age, based on the most critical endpoint, bone fracture. An UL of 1.4 mg fluoride per day was 

established for children of 1 to 3 years of age and 2.2 mg fluoride per day for children of 4 to 8 years 

of age, based on the critical endpoint, moderate dental fluorosis (EFSA, 2005a). 

                                                      
14  External scientific report: Selected trace and ultratrace elements: Biological role, content in feed and requirements in 

animal nutrition – Elements for risk assessment. Available online: www.efsa.europa.eu/en/supporting/doc/68e.pdf 
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3.2.1.11. Lead 

Lead is an environmental contaminant that occurs naturally and, to a greater extent, from 

anthropogenic activities such as mining and smelting and battery manufacturing. Lead is a metal that 

occurs in organic and inorganic forms; the latter predominates in the environment. Human exposure to 

lead can occur via food, water, air, soil and dust. Food is the major source of lead exposure. Lead is 

rarely present in drinking water as a result of its dissolution from natural sources and concentrations in 

drinking water are usually below 5 mg/l (WHO, 2011). Lead has recently been evaluated by the 

CONTAM Panel (EFSA Panel on Contaminants in the Food Chain (CONTAM), 2010a).  

Due to its long half-life in the body, chronic toxicity of lead is of most concern when considering the 

potential risk to human health. Studies with rodent and non-human primate models have demonstrated 

that chronic low-level exposure to lead causes neurotoxicity, particularly learning deficits in the 

developing animal.   

At current exposure, the central nervous system is considered to be the main target organ for lead 

toxicity in humans, and there is considerable evidence demonstrating that the developing brain is more 

vulnerable to the neurotoxicity of lead than the mature brain. In addition, several studies identified an 

association between blood lead concentration, elevated systolic blood pressure (SBP) and chronic 

kidney disease (CKD), at relatively low blood lead (B-Pb) levels (EFSA Panel on Contaminants in the 

Food Chain (CONTAM), 2010a).  

Lead may be a weak indirect genotoxic metal. There is extensive experimental evidence that at high 

doses lead can induce tumours at a number of different sites in rodents. The IARC (2006) has 

classified inorganic lead as probably carcinogenic to humans (Group 2A).  

In humans, the central nervous system is the main target organ for lead toxicity, and there is 

considerable evidence demonstrating that the developing brain is more vulnerable to the neurotoxicity 

of lead than the mature brain. In addition, several studies identified an association between blood lead 

concentration, elevated SBP and CKD, at relatively low B-Pb levels.  

The CONTAM Panel identified developmental neurotoxicity in young children and cardiovascular 

effects and nephrotoxicity in adults as potential critical adverse effects of lead on which to base the 

risk assessment. Full Scale IQ score was identified as the most relevant endpoint for children. Dose-

response analysis of cardiovascular effects and nephrotoxicty identified effects on systolic blood 

pressure and effects on glomerular filtration rate as the most critical. These endpoints were assessed 

using B-Pb as the most appropriate dose metric. The resulting B-Pb level associated with the 

95
th 

lower confidence limit of the benchmark dose (BMD) of 1 % extra risk (BMDL01) for the 

respective endpoint were then converted by mathematical modelling into the respective dietary 

exposure. For children a BMDL01 dietary intake value of 0.50 µg/kg b.w. per day for developmental 

neurotoxicity was derived. For adults the BMDL01 dietary lead intake values for cardiovascular and 

kidney effects were 1.50 µg/kg b.w. per day and 0.63 µg/kg b.w. per day, respectively. Since these 

values are all below the PTWI of 25 μg/kg b.w. set by the Joint FAO/WHO Expert Committee on 

Food Additives (JECFA) (WHO, 1986, 2000) and endorsed by the Scientific Committee of Food 

(SCF, 1992), the CONTAM Panel concluded that this PTWI is no longer appropriate.  

As there was no evidence for a threshold for the key effects of lead, The CONTAM Panel concluded 

that it would not be appropriate to derive a PTWI, and therefore used a margin of exposure (MOE) 

approach in its risk characterization. Although the MOE is small it was concluded that the risk of 

clinically important effects on either the cardiovascular system or kidneys of adult consumers, at 

current levels of lead exposure is low to negligible. In infants, children and pregnant women, there is 

potential concern at current dietary levels of exposure to lead for effects on neurodevelopment. 

Therefore it was recommended to continue reduction of exposure to lead (EFSA Panel on 

Contaminants in the Food Chain (CONTAM), 2010a).  
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The WHO (2004) derived a provisional guideline value for lead in drinking water of 0.01 mg/l, based 

on a PTWI of 25 μg/kg b.w., an allocation of 50 % and a drinking water consumption of 0.75 l for a 

5 kg infant. This guideline was designated provisional on the basis of treatment performance and 

analytical achievability (WHO, 2004, 2011).  

3.2.1.12. Manganese 

Manganese is one of the most abundant metals. It is naturally occurring in many surface water and 

groundwater sources. Manganese is an essential element that functions as an enzyme activator and is a 

constituent of several enzymes such as glycosyltransferase, pyruvate carboxylase and manganese 

dismutase as indicated in an external report to EFSA.
15

 Conflicting results on effects of long-term 

exposure to high levels of manganese in drinking water have been reported in epidemiological studies. 

Studies showing adverse neurological effects have significant confounders, and a number of other 

studies did not show any effect. Results from toxicological studies with experimental animals, 

particularly in rodents, are not an appropriate basis for human risk assessment, because the 

physiological requirements for manganese vary among different animal species (WHO, 2011).  

The WHO (1996, 2004) derived a health-based value of 0.4 mg/l, but because this value is well above 

the manganese concentration normally found in drinking water it was not considered necessary to 

derive a formal guideline value (WHO, 2011). 

3.2.1.13. Mercury 

Inorganic mercury in uncontaminated drinking water is usually in the form of Hg
2+

. In fresh water and 

seawater methylation of inorganic mercury may occur. Nephrotoxicity is the most sensitive endpoint 

following chronic ingestion of inorganic mercury. Mercury II has the potential to increase the 

incidence of benign tumours at sites where tissue damage is apparent. It also exhibits weak genotoxic 

activity but does not induce point mutations (WHO, 2011). IARC (1993) classified metallic mercury 

and inorganic mercury compounds as not classifiable as to their carcinogenicity to humans (Group 3). 

Based on kidney effects observed in long-term toxicity experiments in rats the WHO established a 

TDI of 2 μg/kg b.w. Allocating 10 % of the TDI to drinking water and assuming consumption of two 

litres of drinking water by a 60 kg adult, a guideline value for inorganic mercury of 6 μg/l has been 

derived (WHO, 2004). This value has recently been reconfirmed (WHO, 2011). 

3.2.1.14. Nickel 

Food is the major source of exposure of the non-smoking, non-occupationally exposed human 

population. Water generally is a minor contributor to daily oral exposure, with nickel concentrations in 

drinking water usually below 0.02 mg/l. Nickel is generally not accepted as an essential nutrient for 

higher animals, apparently because of the lack of a clearly defined specific biochemical function and 

no enzymes or co-factors are known that include nickel in higher organisms. EFSA (2005b) considers 

the essentiality of nickel for humans to be not demonstrated.  

Nickel compounds do not show mutagenic activity in bacterial tests, but show weak positive results in 

cultured mammalian cells tested for chromosomal aberrations. Also a weak increase in sister 

chromatid exchange, disturbances of spindle function, the inhibition of DNA synthesis / repair and the 

induction of cell transformation have been observed in in vitro tests with nickel compounds (EFSA, 

2005b). IARC (1990) evaluated the carcinogenic risks of nickel and classified nickel compounds as 

carcinogenic to humans (Group 1) and metallic nickel as possibly carcinogenic to humans (Group 2B). 

Overall, the toxicological database for oral exposure to nickel is limited and EFSA (2005b) considered 

the available animal studies inadequate to identify a non-observed-adverse-effect level (NOAEL).  

                                                      
15  External scientific report: Selected trace and ultratrace elements: Biological role, content in feed and requirements in 

animal nutrition – Elements for risk assessment. Available online: www.efsa.europa.eu/en/supporting/doc/68e.pdf 

http://www.efsa.europa.eu/en/supporting/doc/68e.pdf
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The WHO established a TDI of 12 μg/kg b.w. based on effects after oral provocation of fasted patients 

with dermal nickel allergy. Using an allocation of 20 % of the TDI to drinking water and assuming 

consumption of two litres of drinking water by a 60 kg adult, a guideline value for nickel of 70 μg/l 

has been derived (WHO, 2004). 

3.2.1.15. Nitrate 

Nitrate is a naturally occurring compound that is part of the nitrogen cycle, as well as an approved 

food additive. It plays an important role in the nutrition and function of plants. Nitrate can reach both 

surface and groundwater as a result of agricultural activity. In general, the most important source of 

human exposure to nitrate is through consumption of vegetables, and to a lesser extent through water 

and other foods. In the case of bottle-fed infants drinking water can be a major source of exposure to 

nitrate (EFSA, 2008a; WHO, 2011). Nitrate per se is relatively non-toxic, but its metabolites and 

reaction products e.g., nitrite, nitric oxide and N-nitroso compounds, have raised concern because of 

implications for adverse health effects such as methaemoglobinaemia and carcinogenesis.  

In humans methaemoglobinaemia is a consequence of the reaction of nitrite with haemoglobin to form 

methaemoglobin which binds oxygen tightly and does not release it, thereby blocking oxygen 

transport. Particularly bottle-fed infants could be at risk due to their high intake in relation to their 

bodyweight and the limited presence of enzymes to convert methaemoglobin back to haemoglobin. 

There is compelling evidence that the risk of methaemoblobinaemia is primarily increased in the 

presence of simultaneous gastrointestinal infections (WHO, 2011). On the other hand recent research 

indicates that nitrite participates in host defence having antimicrobial activity, and other nitrate 

metabolites e.g. nitric oxide, have important physiological roles such as vasoregulation. 

Epidemiological studies do not indicate that nitrate intake from diet or drinking water is associated 

with increased cancer risk (EFSA, 2008a). 

The former EU Scientific Committee on Food (SCF) reviewed the toxicological effects of nitrate and 

established an acceptable daily intake (ADI) of 0-3.7 mg/kg b.w. based on growth reduction observed 

in a chronic toxicity study (EC, 1992). The more recent assessment of nitrate by the Joint Expert 

Committee on Food Additives (JECFA) (FAO/WHO, 2003) reconfirmed this ADI. In the evaluation 

of nitrate the CONTAM Panel concluded that in the absence of significant new toxicological and 

toxicokinetic data, there was no need to re-consider this ADI (EFSA, 2008a). 

The WHO reconfirmed the guideline value of 50 mg/l for nitrate (or 11 mg/l as nitrate nitrogen) to 

protect against methaemoglobinaemia in bottle-fed infants (WHO, 2011). 

3.2.1.16. Nitrite 

Nitrite is formed naturally by the nitrogen cycle during the process of nitrogen fixation and it is 

subsequently converted to nitrate, a major nutrient assimilated by plants. Nitrite is formed in nature by 

the action of nitrifying bacteria as an intermediate stage in the formation of nitrates. Conversely, 

conversion of nitrate to nitrite and other metabolites (nitric oxide and N-nitrosocompounds) may occur 

either in the saliva of most monogastric animals or in the stomach of ruminants due to microbiological 

action. This nitrite formation is the origin of the acute toxicity of nitrate (methaemoglobinaemia). The 

acute toxicity of nitrite is about 10 times higher than that of nitrate (EFSA, 2008a, 2009a). 

In a long-term carcinogenicity study there was equivocal evidence for carcinogenic activity in female 

mice based on the combined incidence of squamous cell papilloma and carcinoma of the forestomach 

(NTP, 2001). In view of the lack of genotoxicity of nitrite, the absence of tumours in rats and male 

mice, and the fact that humans do not possess a forestomach, the relevance of this observation is 

doubtful (WHO, 2011).  

The SCF reviewed the toxicological effects of nitrite and established an ADI of 0-0.06 mg/kg based on 

heart and lung toxicity in a long-term study in rats (EC, 1997). The JECFA (2002) established an ADI 

of 0-0.07 mg/kg b.w. for nitrite based on the same data. The latter figure does not differ significantly 
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from the ADI established by the SCF. In the absence of significant new toxicological and toxicokinetic 

data, the CONTAM Panel concluded that there was no need to re-consider this ADI (EFSA, 2008a, 

2009a). 

The WHO reconfirmed the guideline value of 3 mg/l for nitrite (or 0.9 mg/l as nitrite nitrogen) to 

protect against methaemoglobinaemia in bottle-fed infants (WHO, 2011). 

3.2.1.17. Selenium 

Selenium is present in the earth‘s crust in association with sulphur-containing minerals. Selenium is an 

essential element the biological functions of which are mediated via specific selenoproteins/ 

selenoenzymes, hydrogen selenide and methylated selenium compounds, respectively. A large number 

of selenoproteins has been identified, virtually all containing selenocysteine. The most important 

selenoproteins are peroxidases, deiodinases, and thioredoxin reductase (EFSA, 2006). 

The toxicological database for selenium is limited. A short term (28 day) toxicity study in Wistar rats 

revealed that the oral administration of 1000 µg Se/kg b.w. per day resulted in reduced weight gain 

and food consumption, and induced hepatotoxicity, including vacuolization and necrosis of 

hepatocytes, increased apoptosis and acute inflammation. No NOAEL was identified (EFSA, 2008b). 

Selenium compounds (i.e., selenite, selenate, selenide, selenocysteine, selenosulphide) showed a 

moderate genotoxic activity in several in vitro tests. These studies indicate that the mutagenic effects 

of selenium salts are associated with the production of ROS. It is well known that auto-oxidisable 

selenium metabolites, such as hydrogen selenide, can undergo redox cycling producing oxygen 

radicals and cause DNA strand breaks (SCF, 2000).  

In 2011 the WHO replaced the previously derived guideline value of 0.01 mg/l (WHO, 1996, 2004) by 

a provisional guideline value of 0.04 mg/l, based on an allocation of 20 % to the upper tolerable intake 

of 400 μg/person per day established by FAO/WHO (2004) and a daily consumption of two litres 

drinking water. This guideline value is designated as provisional because of the uncertainties inherent 

in the scientific database (WHO, 2011).  

3.2.2. Organic chemicals  

3.2.2.1. Acrylamide 

Acrylamide may be formed in carbohydrate-rich and protein-low food commodities, during cooking or 

other thermal processing such as frying, baking or roasting at temperatures of 120 °C or higher (EFSA, 

2005c). In drinking water acrylamide monomer may be present due to the use of polyacrylamide 

coagulants used in drinking water treatment. In seawater acrylamide is usually not detectable (WHO, 

2011). Acrylamide is neurotoxic, affects germ cells and impairs reproductive function. In long-term 

animal studies with rodents acryl amide administered in the drinking water was carcinogenic (WHO, 

2011). The IARC classified acrylamide as probably carcinogenic to humans, class 2A (IARC, 1994). 

Acrylamide was negative in bacterial mutagenicity assays but it induced gene mutations in 

mammalian cells and chromosal aberration in vitro and in vivo. Based on the combined incidence of 

mammary, thyroid and uterine tumours observed in female rats in a long-term drinking-water study, 

and using the linearized multistage model the WHO (2004) derived a guideline value for acrylamide 

of 0.0005 mg/l (0.5 μg/l).  

3.2.2.2. Benzene 

Benzene may be present in water resulting from industrial effluents and atmospheric pollution. In 

humans acute occupational exposure to high levels of benzene might cause effects on the central 

nervous system. Benzene causes leukaemia in humans and experimental animals. It is not mutagenic 

in bacterial assays but induces chromosomal aberrations in vivo in a number of species including 

humans. The WHO (2004) has derived a guideline value for benzene of 0.01 mg/l, based on linear 

extrapolation applied to the incidence of leukaemia and lymphomas in female mice and oral cavity 

squamous cell carcinomas in male rats in two-year gavage studies.  
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3.2.2.3. Benzo(a)pyrene and other polycyclic aromatic hydrocarbons 

Polynuclear aromatic hydrocarbons (PAHs) form a large class of diverse organic compounds 

composed of two or more fused aromatic rings of carbon and hydrogen atoms. Most PAHs are emitted 

into the environment from a variety of combustion and pyrolysis processes. Due to their low water 

solubility and high affinity for particulate matter PAHs are usually not detected in water in notable 

concentrations (WHO, 2011). If detected in drinking water the origin usually is the coal-tar coating of 

distribution pipes. This situation does not occur for clean seawater. 

The SCF (EC, 2002) concluded that 15 PAHs, namely benz[a]anthracene, benzo[b]fluoranthene, 

benzo[j]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, benzo[a]pyrene, chrysene, 

cyclopenta[cd]pyrene, dibenz[a,h]anthracene, dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, 

dibenzo[a,i]pyrene, dibenzo[a,l]pyrene, indeno[1,2,3-cd]pyrene and 5-methylchrysene show clear 

evidence of mutagenicity/genotoxicity in somatic cells in experimental animals. With the exception of 

benzo[ghi]perylene they have also shown clear carcinogenic effects in experimental animals in 

bioassays using various (non-oral) routes of exposure. According to the SCF these compounds may be 

regarded as potentially carcinogenic to humans and therefore present a health concern. Only for 

benzo(a)pyrene there is evidence for carcinogenicity following oral administration. Therefore 

benzo[a]pyrene has often been used as indicator to estimate the risk of exposure to PAHs. Based on an 

increase in gastric tumours in mice administered benzo[a]pyrene in the diet and applying linearized 

multistage extrapolation, the WHO (1996) derived a guideline value for benzo(a)pyrene of 0.7 μg/l, 

associated with an excess cancer risk of 10
-5

. This guideline value has since then been retained (WHO, 

2011). However, in the drinking water domain also other PAHs such as benzo(b)fluoranthene, 

benzo(k)fluoranthene, benzo(ghi)perylene, and indeno(1,2,3-cd)pyrene have been proposed as 

parameters to be monitored (see Annex A, Chapter 6).  

3.2.2.4. 1,2-Dichloroethane 

1,2-Dichloroethane may enter surface water via industrial effluents and ground water following 

leaching from waste disposal sites. In orally exposed experimental animals 1,2-dichloroethane affects 

the immune system, the central nervous system, the liver and the kidney. 1,2-Dichloromethane is 

mutagenic in bacterial assays and mammalian cells. It induces DNA damage in liver cells in vivo and 

binds to DNA, RNA and proteins in animals. IARC (1999b) classified 1,2-dichloroethane as possibly 

carcinogenic to humans (Group 2B). By applying the linearized multistage model to the incidence of 

haemangiosarcomas in rats the WHO (2004) derived a guideline value of 0.03 mg/l.   

3.2.2.5. Epichlorohydrin  

Epichlorohydrin is used for the manufacture of water treatment coagulant polymers. No quantitative 

data are available on its occurrence in drinking water, but it has been noted that it is slowly hydrolysed 

in aqueous media (WHO, 2011). In long-term studies epichlorohydrin induces tumours of the 

forestomach in rodents following oral exposure. Based on information from occupationally exposed 

humans the IARC (1999b) classified epichlorohydrin in group 2A, probably carcinogenic to humans. 

The WHO (2004) established a TDI of 0.14 μg/kg b.w. for epichlorohydrin based on forestomach 

hyperplasia and using an uncertainty factor of 10,000: 100 for inter- and intraspecies variation, 10 for 

the use of a LOAEL instead of a NOAEL, and 10 for carcinogenicity. The use of the linearized 

multistage model for estimating cancer risk was considered inappropriate by WHO, because tumours 

were seen only at the site of administration, where epichlorohydrin is highly irritating. Allocating 

10 % of this TDI to drinking water and assuming a drinking water consumption of 2 l/day by a 60 kg 

adult, a provisional guideline value of 0.4 μg/l was derived. This guideline value was considered 

provisional because of the uncertainties regarding the toxicity of epichlorohydrin and the large 

uncertainty factor used in establishing the TDI (WHO, 2004). 

3.2.2.6. Pesticides 

Pesticides (plant protection products) form a large class of compounds comprising acaricides, 

algicides, biocides, fungicides, herbicides, insecticides, nematocides, rodenticides and slimicides. Over 
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the years several international organisations such as the Joint FAO/WHO meeting on Pesticides 

Residues (JMPR), the EU Scientific Committee on Food and EFSA have evaluated pesticides and 

established an Acute Reference Dose for pesticides with a prominent acute toxicity such as 

organophosphates and carbamates, and an Acceptable Daily Intake for pesticides exerting toxic effects 

following long-term exposure. The WHO has derived health based guideline values for a wide range 

of pesticides, an overview of which is presented in the Fourth Edition of ‗Guidelines for Drinking-

Water Quality‘ (WHO, 2011). In Directive 98/83/EC
12 

(see Table 9, Annex A) the European 

Commission has set a low parameter value for pesticides (0.1 μg/l for individual pesticides and 

0.5 μg/l for Total) actually implying the need for absence of pesticides in drinking water.  

3.2.2.7. Tetrachloroethene 

Tetrachloroethene is widespread in the environment and can be found in trace amounts in water. 

Industrial emissions can sometimes lead to high levels in groundwater. The major toxic effects of 

long-term exposure to tetrachloroethene are on the liver and the kidney. The overall evidence indicates 

that it is not genotoxic (WHO, 2011). The IARC (1999b) classified it as group 2A (probably 

carcinogenic to humans). Based on the NOAEL for liver toxicity in male mice and male and female 

rats in repeated dose toxicity studies the WHO established a TDI of 14 μg/kg b.w. Allocating 10 % of 

the TDI to drinking water and assuming that a 60 kg adult consumes two litres per day a guideline 

value of 0.04 mg/l was derived (WHO, 2004). 

3.2.2.8. Trichloroethene 

Trichloroethene is mainly emitted to the atmosphere, but can also leach into groundwater and to a 

lesser extent into surface water. Trichloroethene appears to be weakly genotoxic in vitro and in vivo. 

Although it is carcinogenic in rodents the WHO (2004) concluded that the critical effect is 

developmental toxicity. The IARC (1999b) classified trichloroethene as group 2A (probably 

carcinogenic to humans). Based on a BMDL10 for developmental effects in rats the WHO established a 

TDI of 1.46 μg/kg b.w. Allocating 50 % of the TDI to drinking water and assuming that a 60 kg adult 

consumes two litres per day a guideline value of 0.02 mg/l was derived (WHO, 2004). 

3.2.2.9. Trihalomethanes 

Chlorination of raw water results in the formation of trihalomethanes. Chloroform is the most common 

disinfection by-product, but also bromoform, bromodichloromethane and dibromochloromethane can 

be formed (WHO, 2011).  

Chloroform causes liver toxicity and in long-term studies in mice liver tumours have been observed. 

The weight of evidence indicates that chloroform is not genotoxic. The IARC (1999c) classified 

chloroform as possibly carcinogenic to humans (group 2B). Based on a threshold mechanism for liver 

carcinogenicity the WHO established a TDI of 15 μg/kg b.w. Allocating 75 % of the TDI to drinking 

water and assuming that a 60 kg adult consumes 2L/day a guideline value of 0.3 mg/l was derived 

(WHO, 2004). 

Data from a variety of assays on the genotoxicity of bromoform are equivocal. It did not induce 

tumours in mice but a small increase in tumours of the large intestine has been observed in rats (WHO, 

2011). The IARC (1999b) classified bromoform in group 3 (not classifiable as to its carcinogenicity to 

humans). Based on the NOAEL for liver toxicity in a well-conducted 90-day study in rats the WHO 

(2005) established a TDI for bromoform of 18 μg/kg b.w. Allocating 20 % of the TDI to drinking 

water and assuming that a 60 kg adult consumers two litres per day a guideline value of 0.1 mg/l was 

derived (WHO, 2004). 

Genotoxicity data for dibromochloromethane are inconclusive. It causes liver toxicity in rats and mice. 

In long-term toxicity studies it induced hepatic tumours in female mice but not in rats (WHO, 2011). 

The IARC (1999b) classified dibromochloromethane in group 3 (not classifiable as to its 

carcinogenicity to humans). Based on the NOAEL for liver toxicity in a well-conducted 90-day study 

in rats the WHO (2005) established a TDI for dibromochloromethane of 21 μg/kg b.w. Allocating 
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20 % of the TDI to drinking water and assuming that a 60 kg adult consumes two litres per day a 

guideline value of 0.1 mg/l was derived (WHO, 2004). 

Bromodichloromethane gave inconclusive results in a variety of in vitro and in vivo genotoxicity 

assays. Conflicting results have been observed with respect to the carcinogenicity of 

bromodichloromethane in long-term studies in rats and mice (WHO, 2011). The IARC (1999b) has 

classified it in group 2B (possibly carcinogenic to humans). The WHO (2011) has derived a guideline 

value of 0.06 mg/l drinking water.  

3.2.2.10. Vinyl chloride 

Due to its high volatility vinyl chloride has rarely been detected in surface water. In groundwater it can 

be found as a degradation product of tri- and tetrachloroethene. Metabolites of vinyl chloride are 

genotoxic producing DNA adducts. In occupationally exposed humans chromosomal aberrations, 

micronuclei and sister chromatid exchanges have been found, confirming the genotoxicity of vinyl 

chloride in vivo.  Based on the carcinogenicity of vinyl chloride in workers exposed via inhalation the 

IARC (2008) has classified vinyl chloride in group 1 (carcinogenic to humans). Following oral 

administration of vinyl chloride to rodents, tumours in the mammary gland, Zymbal gland, the liver 

and other sites have been observed. Linear extrapolation from the dose causing tumours in 10 % of the 

rats, and assuming a doubling of the risk for exposure from birth, resulted in a guideline value of 

0.3 μg/l, associated with the upper-bound excess cancer risk of 10
-5

 (WHO, 2004).  

3.2.3. Occurrence of chemicals in seawater 

A large database on levels of chemicals in seawater has been made available by the International 

Council for the Exploration of the Sea (ICES). It contains concentration data from samples of seawater 

collected at various locations in the North Sea and in the coastal waters of Denmark (both at the West 

and East coast), the Baltic Sea and from the Atlantic Ocean (ICES, 2012). Another study provided 

information on levels of a number of compounds in seawater from the North Sea and the North-eastern 

Atlantic (AFSSA, 2006). The results are presented in Table 1.  
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Table 1:  Concentrations of chemicals in seawater (μg/l) 

 
Number of  

samples 
Mean Range  

Reference 

Inorganics      

Antimony n.r.
a
 0.18– 0.22 n.d

 b
. Filella  et al., 2002 

Arsenic 154 1.6 0.4 – 4.8 ICES, 2012 

Barium n.r. 6 n.r. WHO, 1990 

Boron 19 3600 700 - 4900 ICES, 2012 

Bromate n.d. n.d. n.d.  

Cadmium 

 

383 

n.r. 

0.07 

 

0.005 – 1.3 

0.005 – 0.025 

ICES, 2012 

AFFSA, 2006 

Chromium 241 1.5 0.2 – 6.3  ICES, 2012 

Copper 
384 

n.r. 

1.8 

n.r. 

0.21 – 6.1 

0.05 – 0.36 

ICES, 2012 

AFFSA, 2006 

Cyanide n.d. n.d. n.d.  

Fluoride n.r. .n.r. 1200 – 1500  Camargo, 2003 

Lead 
393 

n.r. 

0.8 

n.r. 

0.001 – 7.6 

0.005 – 0.02 

ICES, 2012 

AFFSA, 2006 

Manganese 29 6.2 0.7- 10.8  ICES, 2012 

Mercury 
673 

n.r. 

0.012 

n.r. 

0.00014 – 0.09 

0.0001 – 0.0005 

ICES, 2012 

AFFSA, 2006 

Nickel 237 1.1 0.31 – 3.9 ICES, 2012 

Nitrate 6583 78 1 - 4400 ICES, 2012 

Nitrite 9255 2.4 0.2 – 94  ICES, 2012 

Selenium n.r. n.r. 0.01 – 0.45 Nagpal and Howell, 2001 

Organics     

Acrylamide n.d. n.d. n.d.  

Benzene 57 0.75 0.05 – 1.5 ICES, 2012 

Benzo(a)pyrene 
367 

- 

0.00029 

 

0.000003- 0.012 

0.000001 – 0.000005 

ICES, 2012 

AFFSA, 2006 

1.2-Dichloroethane 95 0.8 0.1 - 2 ICES, 2012 

Epichlorohydrin n.d. n.d. n.d.  

Pesticides n.d. n.d. n.d.  

Tetrachloroethene - 0.012 0.0002 – 2.6 De Raat, 2003  

Trichloroethene  97 0.09 0.05 – 0.2 ICES, 2012 

Trihalomethanes
(c)

 93 0.12 0.05 – 0.8 ICES, 2012 

Vinyl chloride n.d. n.d. n.d.  

(a): n.r. means not reported  

(b): n.d. means no data identified  

(c): Data only for chloroform 

 

For most of the chemicals addressed above information on the concentration in seawater could be 

identified. The data in Table 1 show that mean concentrations are usually in the low μg/l range or even 

lower. For boron, however, the mean concentration is 3.6 mg/l (range 0.7-4.9 mg/l). In contrast, for 

benzo(a)pyrene the mean concentration is about 0.3 ng/l. However, this concentration can be higher 

locally due to e.g. oil spills. 

For a number of organic compounds such as acrylamide, epichlorohydrin and vinyl chloride no data 

are available. Since these compounds are used in drinking water treatment and transport they were 
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included as parameter in the drinking water directive (Council Directive 98/83/EC
12

), but 

concentrations in seawater can be expected to be low.  

Other organic contaminants such as polychlorinated biphenyls (PCBs), dioxins, brominated flame 

retardants and organotin antifouling agents have raised concern regarding contamination of marine 

life. Because of their lipophylic properties they are bioaccumulative and higher concentrations are 

found higher in the marine food chain, e.g. in fish. Because these compounds have a low solubility in 

water their concentrations in sea water are in general very low. For PCBs, for instance, the 

concentration in seawater is in the order of pg/l (AFSSA, 2006). Therefore these contaminants are not 

considered to be a potential hazard with respect to the use of clean seawater.  

3.3. Phytoplankton/algae  

Algae may be present in seawater, particularly in coastal waters and estuaries. A number of marine 

algae species such dinoflagellates and diatoms have been reported to be associated with toxic 

syndromes in humans known as diarrhoeic shellfish poisoning (DSP), amnesic shellfish poisoning 

(ASP), paralytic shellfish poisoning (PSP) and neurotoxic shellfish poisoning (NSP). Outbreaks of 

these toxic syndromes were primarily found in humans that consumed filter-feeding bivalve molluscs 

such as oysters, mussels, scallops, and clams, that had concentrated the toxins present in the algae in 

their digestive gland (hepatopancreas). EFSA has released a series of opinions on marine biotoxins 

that could be present in bivalve molluscs. The most important toxins related to human intoxications 

are described below. 

Diarrhoeic Shellfish Poisoning (DSP) is caused by okadaic acid (OA)-group toxins. These toxins are 

usually produced by dinoflagellates that belong to the genera Dinophysis spp. and Prorocentrum spp. 

DSP is characterized by symptoms such as diarrhoea, nausea, vomiting and abdominal pain, and is 

found in humans, shortly after ingestion of contaminated bivalve molluscs (EFSA, 2008c).  

Amnesic shellfish poisoning (ASP) in humans is caused by domoic acid (DA) which is present mainly 

in marine red algae of the genus Chondria and diatoms of the genus Pseudo-nitschia. Symptoms of 

ASP include gastrointestinal effects (nausea, vomiting, diarrhoea or abdominal cramps) within 

24 hours of consuming shellfish contaminated with DA and/or neurological symptoms or signs 

(confusion, loss of memory, or other serious signs such as seizure or coma) occurring within 48 hours 

(EFSA, 2009b). 

Paralytic shellfish poisoning (PSP) in humans is caused by saxitoxin (STX)-group toxins. Symptoms 

of human PSP intoxication vary from a slight tingling sensation or numbness around the lips to fatal 

respiratory paralysis. Fatal respiratory paralysis occurs 2 to 12 hours following consumption of 

shellfish contaminated with STX-group toxins. STX-group toxins are mainly produced by 

dinoflagellates belonging to the genus Alexandrium: e.g. Alexandrium tamarensis, A.minutum (syn. A. 

excavata), A. catenella, A. fraterculus, A. fundyense and A. cohorticula. Also other dinoflagellates 

such as Pyrodinium bahamense and Gymnodinium catenatum have been identified as sources of STX-

group toxins (FAO, 2004). Shellfish feeding on these algae can accumulate the toxins, but the shellfish 

itself is rather resistant to the harmful effects. STX-producing algae species occur worldwide, both in 

tropical and moderate climate zones (EFSA, 2009c).  

Neurotoxic shellfish poisoning (NSP) is characterised by mainly neurological and gastrointestinal 

effects including e.g. nausea, vomiting, diarrhoea, parasthesia, cramps, bronchoconstriction, paralysis, 

seizures and coma. These effects are caused by brevetoxin (BTX) group toxins which are primarily 

produced by a dinoflagellate Karenia brevis. To date, NSP appears to have been limited to the Gulf of 

Mexico, the east coast of the United States of America (U.S.A.), and the New Zealand Hauraki Gulf 

region, but the apparent trend towards expansion of algal bloom distribution suggest that BTX-group 

toxins are emerging in other regions in the world. To date BTX-group toxins have not been reported in 

shellfish or fish from Europe (EFSA Panel on Contaminants in the Food Chain (CONTAM), 2010b). 
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Signs and symptoms of palytoxin (PlTX)-group toxins intoxication are not well-defined, but include 

myalgia and weakness, possibly accompanied by fever, nausea and vomiting. PlTX-group toxins have 

mainly been detected in marine zoanthids (soft corals) of the genus Palythoa and in benthic 

dinoflagellates of the genus Ostreopsis (e.g. Ostreopsis siamensis, O. mascarenensis, O. ovata). 

Blooms of Ostreopsis have been reported in European countries such as France, Greece, Italy and 

Spain (EFSA, 2009e).  

3.4. Summary of conclusions on hazard identification and characterisation  

3.4.1. Microbiological hazards 

Based on incidents of food and waterborne infection, the properties and the distribution of the agents, 

microbiological hazards (include viruses, bacteria and parasites) have been identified as associated 

with seawater. Poor quality sea water may consequently have a severe impact on public health through 

contamination which may occur during food processes. The hazards are associated either with bacteria 

which are part of the natural marine biota (Vibrio spp.), or pathogenic microbes derived from animal 

or human faecal contamination (norovirus, hepatitis A virus, Salmonella) which is most often of 

terrestrial origin. However, there is currently not sufficient data to estimate the public health risks 

associated with the uses in on-land establishments for handling and washing fishery products, for the 

production of ice used for chilling and for rapid cooling of crustaceans and molluscs after cooking. 

The same hazards may occur in seawater used for bottling although there is a lack of observational 

data on this product.  

The above mentioned microbiological hazards, if present in seawater, are also likely to be present on 

the surfaces of fresh fishery product, but will be concentrated from seawater by filter-feeding shellfish 

and fish prior to harvest. Following preparation of fishery products (gutting, heading, slicing, filleting, 

and chopping) some bacterial hazards (e.g. Vibrio and Clostridium botulinum) will increase as a result 

of their growth if permissive storage conditions are provided. Consequently, the public health risks 

associated with the use of seawater for unprocessed product are likely to be less than those where 

seawater is used for operations where the seawater comes in contact with processed food or ready-to-

eat food (water and ice used for handling and washing of prepared fishery products, water and ice used 

for rapid cooling of crustaceans and molluscs after their cooking). The same consideration applies to 

bottled seawater as this may be consumed as a ready-to-eat product. 

3.4.2. Chemical hazards 

Both inorganic and organic chemicals can be found in seawater in concentrations that are usually low. 

Therefore, the use of seawater on fresh or processed fishery products or for the revitalisation of 

molluscs is unlikely to raise a health concern. A potential health concern may occur from the use of 

bottled seawater where human exposure might be expected to be higher than for the other uses of 

seawater, indicating that more rigid criteria are needed for bottled seawater (see also Sections 4.7.1 

and 4.7.2).  

3.4.3. Algae 

Toxic algae species could have a serious impact on human health. Outbreaks of toxic syndromes are 

primarily related to consumption of filter-feeding bivalve molluscs, that had concentrated the toxins 

present in the algae in their digestive gland (hepatopancreas), rather than to direct contact with 

hazardous algae species in seawater.  

4. Hygiene criteria for clean seawater  

The WHO Guidelines for drinking-water quality (WHO, 2011
16

) states that ―the framework for safe 

drinking-water is a preventive management approach [comprises] three key components:  

                                                      
16   www.who.int/water_sanitation_health/publications/2011/dwq_chapters/en/index.html 
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1.  health-based targets based on an evaluation of health risks  

2.  water safety plans (WSPs), comprising: 

 a system assessment to determine whether the drinking-water supply (from source through 

treatment to the point of consumption) as a whole can deliver water of a quality that meets the 

health-based targets; 

 operational monitoring of the control measures in the drinking-water supply that are of 

particular importance in securing drinking-water safety; 

 management plans documenting the system assessment and monitoring plans and describing 

actions to be taken in normal operation and incident conditions, including upgrade and 

improvement, documentation and communication; 

3.  a system of independent surveillance that verifies that the above are operating properly. 

A similar process to that outlined by the WHO for drinking water supply is used here for seawater 

quality and the practices of assessment and water treatment are standard in the potable water supply 

industry. The use of sanitary surveys (surveys of the faecal pollution inputs, and their potential 

circulation within a given marine environment) for the control of faecal pollution in shellfish growing 

water has recently been reviewed (EFSA Panel on Biological Hazards (BIOHAZ), 2011) and this 

process is equivalent to that of assessment to determine the quality of source water used in drinking-

water supply as part of the WSP outlined in the WHO Guidelines for drinking-water quality (WHO, 

2011). The use of sanitary surveys is outlined and further discussed in Section 4.4.1. Apart from the 

requirement for removal of surface contamination, EC Regulation 853/2004
9
 requires food business 

operators in other areas of food production to use water of potable water quality. A similar approach to 

hygiene criteria based on the risk associated to the intended use of seawater is proposed here. Different 

criteria are therefore proposed according to the intended uses of seawater, considering that the 

contamination risks are not the same. When seawater is used for operations where the seawater comes 

in contact with processed food or ready-to-eat food (water and ice used for handling and washing of 

prepared fishery products, water and ice used for rapid cooling of crustaceans and molluscs after their 

cooking), it is considered that there is a risk of microbial contamination of the product and the public 

health risks are greater. The same consideration has been taken for bottled seawater, as this product 

may be ingested directly without any further treatment or culinary preparation. This provides 

consistency with the EC Regulation 853/2004 requiring food business operators to use water of 

potable water quality and is also consistent with the recommendations of the Codex Guidelines for 

Vibrio in Seafood (CAC/GL 73-2010).  

4.1. Health-based targets 

As already outlined, poor quality sea water may have a severe impact on public health although there 

is currently not sufficient data to estimate the public health risks associated with the uses in on-land 

establishments for handling and washing fishery products, for the production of ice used for chilling 

and for rapid cooling of crustaceans and molluscs after cooking as well as for bottled seawater used 

for domestic use. In the absence of data to propose risk-based criteria, hazard-based criteria are 

proposed instead. These should provide the same level of health protection as achieved by other food 

business operators through the use of potable water. 

4.2. Microbiological criteria - Water safety plans 

4.2.1. Water Supply 

Water of potable quality either requires identification of a pristine source (such as for natural mineral 

water where all possible precautions are taken within the protected perimeters to avoid any pollution 

of, or external influence on, the chemical and physical qualities), or requires specific treatments 
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capable of removing the range of contaminants (pathogenic organisms and chemicals) of public health 

concern. Coastal sources, used for abstraction of seawater in land-based establishments, cannot be 

guaranteed to be free from pathogens from the marine biota or from faecal contamination, and cannot 

be classified as a pristine source. 

The use of sanitary surveys for the control of faecal pollution in shellfish growing water has recently 

been reviewed (EFSA Panel on Biological Hazards (BIOHAZ), 2011) and this process is equivalent to 

that of assessment to determine the quality of source water used in drinking-water supply as part of the 

WSP outlined in the WHO Guidelines for drinking-water quality (WHO, 2011). Faecal indicator 

legislative standards govern shellfish production in the EU and in third countries importing into the 

EU. Competent Authorities in EU Member States are required to define the location and boundaries of 

production (and relaying) areas and to classify the areas according to one of the three categories. They 

are further required to establish a sampling (monitoring) programme, which should be representative, 

to ensure that bivalve molluscs harvested from the area comply with the established classification. If 

bivalves do not comply with the criteria the Competent Authority must close or reclassify the area. An 

essential first step prior to setting up a sampling programme is to perform a sanitary survey within the 

production area, so that sampling points can be determined as representative according to scientific 

principles. This sanitary survey is a requirement of both US
17

 and EU regulations.
18

 However, in the 

EU this only applies to areas classified after 2006 and hence monitoring programmes for the majority 

of production areas in the EU (which were established prior to 2006) are not based on sanitary 

surveys. EU legislation does not contain detailed rules for implementation of monitoring programmes 

– for example key aspects, such as the required monitoring frequency, are not specified. An EU 

working group has drawn up detailed best practice guidance; however compliance with these rules is 

not currently mandatory. For example, future legislation may require a mandatory harvesting 

prohibition zone round all human discharge sources (a minimum distance or dilution criteria could be 

established). Such measures are already incorporated into bivalve mollusc sanitation legislation in 

countries outside of the EU. However, this could only be applied if a sanitary survey had been 

performed in the production area, and thus, the pollution sources were documented. This measure 

would thus also require sanitary surveys to be performed for all production areas (see above) as a first 

step. Sanitary surveys also provide the fundamental pollution impact data needed to consider proactive 

management of bivalve production areas.  

Although sanitary surveys will provide information on optimal abstraction sites to control sources of 

faecal pollution, additional considerations will be needed to reduce contamination from endogenous 

marine flora (including pathogenic Vibrio spp. and C. botulinum). Since these hazards are associated 

with temperature and salinity (Vibrio spp.) as well as sediments (C. botulinum), abstracting seawater 

with high salinity and free from particulate material (especially in waters of temperatures below 20 ºC, 

will increase the seawater quality prior to treatment.  

Options to control hazards in clean seawater include a combination of sanitary surveys, with either 

microbiological standards, and appropriate water treatment will be necessary (for detailed description 

of treatment methods see Annex B). Treatment options should be based on the multiple-barrier 

principle. The strength of this approach is that a failure of one barrier may be compensated by 

effective operation of the remaining barriers, thus minimizing the likelihood of hazards passing 

through the entire system and being present in the final treated water. Treatment options include pre-

treatment, filtration (sometimes combines with other processes) and disinfection. Treatment options 

will have to be designed on a case-by-case basis and consider both the hazards from faecal pollution as 

well as these from the endogenous marine flora (including pathogenic Vibrio spp. and C. botulinum). 

                                                      
17  www.fda.gov/Food/FoodSafety/Product-

SpecificInformation/Seafood/FederalStatePrograms/NationalShellfishSanitationProgram/ucm046353.htm 
18  Directive 2006/113/EC of the European Parliament and of the Council of 12 December 2006. OJ L 376, 27.12.2006,   

p. 14–20. Directive 2006/7/EC of the European Parliament and of the Council of      

15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. OJ L 64, 

4.3.2006, p. 37-51. 
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Control of these hazards will need a validation stage to show that the treatment processes can achieve 

required reduction levels of a wide range of hazards (see Section 3). This validation will have to be 

established on a case-by-case basis for the various applications considered here. Validation should be 

undertaken during pilot stage studies or during initial implementation of water treatment system. It 

should provide assurance of adequate reduction of hazards from faecal pollution as well as those from 

the endogenous marine flora but is not used for day-to-day operational monitoring.  

4.2.2. Operational monitoring 

The WHO (WHO, 2011) advice on water quality is equally applicable to seawater used in land-based 

food production environments as outlined above. This advice concluded; ―Owing to issues relating to 

complexity, sensitivity of detection, cost and timeliness of obtaining results, testing for specific 

pathogens is generally limited to assessing raw water quality as a basis for identifying performance 

targets and validation, where monitoring is used to determine whether a treatment or other process is 

effective in removing target organisms‖. Furthermore, the WHO concluded that ―Drinking-water 

safety is secured by application of a WSP, which includes monitoring the efficiency of control 

measures using appropriately selected determinants. In addition to this operational monitoring, a final 

verification of quality is required. Verification is the use of methods, procedures or tests in addition to 

those used in operational monitoring to determine whether the performance of the drinking-water 

supply is in compliance with the stated objectives outlined by the health-based targets and whether the 

WSP needs modification or revalidation.‖ Operational monitoring of the control measures applied to 

sea water will be dependent on the treatment applied, and microbial parameters are likely to be 

inappropriate for this purpose. Treatment parameters may include disinfectant concentration and 

contact time, ultraviolet intensity, pH, light absorbency, membrane integrity, turbidity and colour etc.  

However, for validation, which is not used for day-to-day management of the water supplies, 

parameters can be chosen to reflect the microorganisms being targeted by treatment. Therefore, 

dependent on the treatment applied to seawater, parameters for hygiene criteria, based on 

microbiological indicators used for drinking water, may provide a similar level of health protection. If 

however the sanitary surveys are effective in excluding faecal contaminants, detection of additional 

indicators based on the marine microbiota may be necessary for hygiene criteria since E. coli and 

Enterococci will not be present in the water prior to treatment. It is therefore proposed here to include 

an additional hygiene criteria based on the detection of all Vibrio species since these are more likely to 

be present in all seawaters, and may act as an indicator for the removal of pathogenic Vibrio spp. and 

thus provide a target for the water treatment. 

4.2.3. Management plans  

Management plans will need to be established which describe actions to be taken to maintain optimal 

operation under normal operating conditions. These will include both responses to normal variations in 

operational monitoring parameters and responses when operational monitoring parameters reach 

critical limits. All activities, including standard operating procedures applied during normal conditions 

and planned responses to incidents and emergencies, should be documented. The critical limits will 

need to be established on a case-by-case basis as a result of validation and pilot stage studies and as 

above are standard practices in the water supply industry.  

4.2.4. Independent surveillance for verification 

Although surveillance will not need to be as extensive as for drinking water supply, there will still be a 

need for public health oversight and processes for approval of water safety plans (WSPs). This 

approval will normally involve review of the system assessment, of the identification of appropriate 

control measures and supporting programmes and of operational monitoring and management plans. 

It should ensure that the WSP covers normal operating conditions and predictable incidents 

(deviations) and has contingency plans in case of an emergency or unplanned events. The surveillance 

and verification process will have common features with that governing shellfish production.  
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4.3. Parameters to verify efficacy of treatment 

There exist various microbiological criteria affecting waters which are already in force in the 

European legislation and elsewhere (see Appendix A). These are based on indicator organisms. 

Indicator organisms can provide a measure of microbiological quality including contamination from 

the environment and a measure of faecal contamination. The most commonly used bacteriological 

indicator organisms used are coliforms, E. coli, enterococci, and Clostridium perfringens or sulphite-

reducing clostridia. 

4.3.1. Escherichia coli 

This species has a precise taxonomic definition, is easily identifiable, and has good specificity for 

faecal contamination since the bacterium survives for brief periods in the environment. Consequently, 

their presence as an indicator organism for faecal contamination of environmental samples is 

frequently used for routine analyses. E. coli is particularly important in the context of existing 

microbiological criteria for live bivalve molluscs, echinoderms, tunicates and gastropods (Reg. (EC) 

No 2073/2005
19

), as well as bathing waters (Directive 2006/7/EC
20

). 

4.3.2. Enterococci  

The genus Enterococcus comprises facultative anaerobic cocci able to survive in a wide range of 

environmental conditions, growth at temperatures between 10 and 45 °C, resistant to 60 °C for 30 

minutes, growth at pH 9.6 and at 6.5 % NaCl, and with ability to hydrolyze esculin in presence of 

40 % bile. Previously classified as Group D Streptococcus, they have been also named faecal 

streptococci and intestinal enterococci (Bartram and Rees, 2000). 

Enterococci are typically excreted in the faeces of humans and other warm-blooded animals and are 

present in large numbers in sewage and water environments polluted by sewage or wastes from 

humans and animals, therefore this group is used as an index of faecal pollution. The numbers of 

enterococci in human faeces are generally about an order of magnitude lower than those of E. coli. 

However, they tend to survive longer than E. coli in water environments, namely in marine waters 

(Borrego et al., 1983; Evison and Tosti, 1980) and persistence patterns are similar to those of water-

borne pathogenic bacteria (Sinton  et al., 1993). Enterococci are particularly important in the context 

of existing microbiological criteria for bathing waters. 

4.4. Proposed microbiological criteria for use in on-land establishments 

4.4.1. Sanitary survey and microbiological criteria to be applied to clean seawater and ice 

intended for handling, washing and chilling of whole fishery products 

When seawater is used for purposes that do not involve a direct contact with food (physical cleaning 

operations of utilities, surfaces, floors, equipment in food facilities such as fish markets, auctions, 

fishery ports) or for the cleaning of whole raw fishery products the exposures associated with those 

operations are low.  

Hygiene criteria based on public health protection currently exist for bathing water. Schets and 

colleagues (2011) estimated exposure for swallowing water through recreational bathing. This study 

estimated that men swallowed on average 27-34 ml per swimming event, women 18-23 ml, and 

children 31-51 ml and varied dependent on the water type. Since there is not sufficient data to 

estimated the public health risks associated with the uses of seawater in on-land establishments and 

assuming that contamination of raw fishery products and the use of clean sea water used for removal 

of surface contamination during processing involves a similar or lower exposure to recreational 

bathing, application of standards used for bathing water to clean seawater is likely to provide a similar 

level of public health protection.  

                                                      
19  OJ L 338, 22.12.2005, p. 1–26.  
20  OJ L 64, 4.3.2006, p. 37–51. 

http://en.wikipedia.org/wiki/Streptococcus


Hygiene criteria to be applied to clean seawater 

 

EFSA Journal 2012;10(3):2613 47 

The hygienic quality of seawater and ice can be assessed by combining a sanitary survey procedure 

with the assessment of microbial source water quality. The same approach is applied to ice derived 

from clean seawater. 

Information on potential sources of pollution in the vicinity of the intended abstraction source should 

be determined. This constitutes the sanitary survey. Examples of elements of a sanitary survey 

(CEFAS, 2010) that could be considered will include identification of information on:  

Desk study 

 Human population centres 

 Sewage discharges and septic tanks 

 Storm-water discharges 

 Locations of major watercourses (rivers, large streams) 

 Locations of ports and marinas 

On the basis of information collected from the sanitary survey the operator should consider; 

 Whether the area is appropriate for abstraction 

 If so, the location of the abstraction point to minimise risk 

 The timing of abstraction to minimise risk, if relevant 

As outlined in Section 4.2.1, the abstraction point survey should also consider temperature, salinity 

and particulate material to reduce contamination by microbiological hazards which are part of the 

marine biota. Pathogenic species of Vibrio show ecological preference for estuarine areas of 

moderated salinity and their occurrence declines when salinity increases above 30 ppt. These species 

may grow at temperatures as low as 13 °C but their concentration in the environment is low at 

temperatures below 16 °C with a highest abundance when the water temperatures are above 20 °C. 

Recent studies suggest turbidity may also affect V. parahaemolyticus levels in shellfish, although the 

extent of its influence is still uncertain. 

It is recommended to use the following criteria equivalent to those in Directive 2006/7/EC on bathing 

water quality (excellent quality), which will be in force starting from 2014, as a standard for source 

waters rather than for process verification. If unable to meet these microbiological criteria, the 

seawater should not be used.  

Table 2:  Proposed criteria to be applied to clean seawater intended for handling, washing and 

chilling of whole fishery products 

Parameter Parametric value
 

Reference method of analysis
 

Escherichia coli 250/100 ml* ISO 9308-3 or ISO 9308-1 

Enterococci 100/100 ml* ISO 7899-1 or ISO 7899-2 

*Based upon a 95-percentile evaluation 

The approach taken in the Bathing Waters Directive to calculate the 95-percentile is based fitting a 

lognormal probability density function to the observed data. The advantage of this method is that a 95-

percentile can be estimated even if only a limited number of samples has been analysed. However, the 

result is only valid if the assumption of a lognormal distribution is reasonably well satisfied, and if the 

mean and standard deviation can be estimated without bias. This may be problematic if zero values are 

included in the dataset. According to the Bathing Waters Directive, these are replaced by the detection 

limit of the analytical method. Recent work has suggested that this may result in biased estimates of 

the mean standard deviation and alternative methods for analysis of such censored data based on 

maximum likelihood estimation or Bayesian statistics have been proposed (Busschaert  et al., 2010; 
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EFSA, 2011). Non-parametric approaches may also be considered (Bartram and Rees, 2000; Ellis, 

1989; Lorimer and Kiermeier, 2007). Further guidance should be provided to food business operators 

how to evaluate data from microbiological analysis of sea water.  

4.4.2. Sanitary survey and criteria to be applied to clean seawater and ice intended for 

handling, washing and chilling of prepared and/or processed fishery products, and for 

rapid cooling of crustaceans and molluscs after their cooking 

Higher exposure to microbiological hazards will occur where seawater will be in contact with 

prepared, processed, and/or ready-to-eat fishery products. For these uses it is recommended that the 

hygienic quality of seawater is assured by source water protection combined with actions resulting 

from a more comprehensive sanitary survey and mandatory water treatment (see Appendix B). The 

same requirement for sanitary surveys and treatment applies to clean seawater used for the production 

of ice. 

Elements of a comprehensive sanitary survey that could be considered, in addition to those presented 

in 4.4.1., will include identification of information on:  

Desk study 

 Locations and timing of sewage sludge spreading  

 Locations of farms, slurry storage tanks and any permitted discharges  

 Locations of major wildlife populations (e.g. deer herds and grazing sites, wildfowl/seabird 

breeding sites) 

 Locations of all watercourses (rivers, streams)  

 Locations of ports, marinas and moorings ; determine whether there are any pump-out 

facilities and/or controls on discharges from boats 

 Tidal characteristics and current flows  

Shoreline survey 

 Undertake a shoreline survey of the area in the vicinity of the proposed abstraction point in 

order to determine whether there are any sources that have not been identified through the 

desk study. Also look for sewage-related debris. 

Laboratory analysis 

 Testing of samples from the proposed abstraction site for turbidity and faecal indicator 

organisms over a range of tidal and weather conditions. 

On the basis of information collected from the sanitary survey the operator should consider; 

 Whether the area is appropriate for abstraction 

 If so, the location of the abstraction point to minimise risk 

 The timing of abstraction to minimise risk, if relevant 

 the appropriate treatment method(s)  

As outlined in Section 4.4.1, the abstraction point survey should also consider seawater temperature, 

salinity and particulate material to reduce contamination from microbiological hazards in the marine 

biota.  

It is recommended to use the following criteria equivalent to those in the drinking water regulation 

(Council Directive 98/83/EC) process and an additional criterion for Vibrio spp. as a tool for 

monitoring the efficacy of the treatment. 
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Table 3:  Proposed criteria to be applied to clean seawater intended for handling, washing and 

chilling of prepared and/or processed fishery products, and for rapid cooling of crustaceans and 

molluscs after their cooking 

Parameter Parametric value
 

Reference method of analysis 

Escherichia coli 0/100 ml ISO 9308-1 

Enterococci 0/100 ml ISO 7899-2 

Vibrio spp.  0/100 ml ISO/TS 21872-1:2007 or ISO/TS 21872-2:2007 

 

4.5. Proposed microbiological criteria to be applied to bottled seawater for domestic uses  

The same considerations as in 4.4.2. apply for the need to apply water treatment and to undertake 

sanitary surveys.  

In addition, more stringent criteria for bottled seawater are recommended, because of the prolonged 

shelf life, the intended use in ready-to-eat products (e.g. salad dressings), and the potential 

concentration of hazards by bivalve molluscs during revitalisation. It is recommended to use the 

following criteria equivalent to those in the drinking water regulation (Council Directive 98/83/EC
21

; 

water offered for sale in bottles or containers) as a tool for monitoring the efficacy of the treatment 

process. As discussed above, seawater cannot be considered as a pristine source, and treatment will be 

necessary to assure that the microbiological criteria will be met. As in the drinking water regulation, a 

turbidity standard of lower than 1 NTU is proposed to assure that water treatment effectively removes 

particulate matter, while also preventing interference with disinfection. As the concentrations of faecal 

indicator bacteria may be low in source waters, they cannot be used to assess treatment effectiveness 

against indigenous species. Therefore, an additional criterion for total Vibrio spp. is proposed as an 

indicator of efficient removal of pathogenic vibrios. 

Table 4:  Proposed criteria to be applied to bottled seawater for domestic uses  

Parameter Parametric value
 

Reference method of analysis 

Turbidity < 1 NTU ISO 7027* 

Escherichia coli  0/250 ml ISO 9308-1 

Enterococci 0/250 ml ISO 7899-2 

Vibrio spp. 0/250 ml ISO/TS 21872-1:2007 or ISO/TS 21872-2:2007 

*Four methods are given in that standard and the appropriate one to use for this application is the quantitative method 

using measurement of diffuse radiation. 

4.6. Detection methods to verify compliance with microbiological criteria  

Methods for E. coli and enterococci are defined in the international standards (ISO 9308-3 or ISO 

9308-1 for E. coli and ISO 7899-1 or ISO 7899-2 for enterococci). Risk of Vibrio illness has been 

related to seafood consumption and consequently surveillance systems have been orientated toward 

the detection of Vibrio in food products. Therefore, standard methods for the investigation of total 

vibrios in water are not currently available and the existing reference methods for the detection of 

Vibrio in seafood (ISO/TS 21872-1:2007 or ISO/TS 21872-2:2007) need to be adapted for their 

application to seawater analysis. Alternatively, a membrane filtration on a selective medium for Vibrio 

on the basis of other ISO standard methods for the examination of water can be applied for measuring 

the total number of Vibrio in seawater. Outline descriptions of these methods are listed in Appendix C. 

                                                      
21  OJ L 330, 5.12.1998 
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4.7. Proposed chemical criteria to be applied to clean seawater 

As indicated in Chapter 2, clean seawater may be used for: a) cleaning of facilities and equipment, 

b) manufacture of ice for cooling and storage of fishery products, either fresh or processed, c) washing 

of whole, gutted, and beheaded fishery products and handling and washing of unprocessed products 

such as fish fillets and slices, d) cooling of crustaceans and molluscs after cooking, and e) to be bottled 

for domestic food preparation activities.  

4.7.1. Clean seawater intended for handling, washing and chilling of whole or prepared 

fishery products, and for rapid cooling of crustaceans and molluscs after their cooking 

Considering the usually low levels of chemical contaminants in seawater the use of clean seawater as 

indicated under a) to d) can be considered not to contribute in a significant manner to exposure of 

consumers and could therefore be considered not to pose a health concern. Nevertheless this seawater 

should be clean and information on local point sources of pollution in the vicinity of the intended 

abstraction source should be determined, such as:  

 Possible municipal pollution 

 Proximity of industrial activities or nuclear power plants 

 Proximity of agricultural activities 

 Possible local oil spills or oil discharges from boats 

 Location of river estuaries 

Based on the information collected the operator should conclude on the appropriateness of the 

seawater abstraction point.  

4.7.2. Bottled seawater for domestic use 

The use of bottled seawater for home cooking of fish, lobster or pasta, for bread baking, pizza dough 

or savoury pastry, as a component of salad dressing by mixing with either oil or vinegar for salad 

dressing and for re-vitalisation of live bivalve molluscs, may pose a potential health risk for the 

consumer. 

The same considerations on the suitability of the abstraction source of the seawater as in Section 4.7.1 

apply. In addition, consideration should be given to abstraction deep in the water column (off-shore) 

as the preferred source of seawater for the production of bottled seawater.  

In addition, to these considerations, stringent criteria for bottled seawater should be applied. In line 

with the requirements for food business operators to use water of potable water quality laid down in 

Regulation 853/2004
9
 it is concluded that the same approach should be applied for bottled seawater 

which will be placed on the market. Standards for chemicals (parameter values) in potable water have 

been laid down in Council Directive 98/83/EC
12

 on the quality of water intended for human 

consumption, which must be met by drinking water within the European Union and establishes strict 

quality standards for water used for human consumption. In this directive ‗water intended for human 

consumption‘ is defined as all water either in its original state or after treatment, intended for drinking, 

cooking, food preparation or other domestic purposes, regardless of its origin and whether it is 

supplied from a distribution network, from a tanker, or in bottles or containers. In addition, 

Commission Directive 2003/04/EC
13

 establishes the list, concentration limits and labelling 

requirements for the constituents of natural mineral waters. Both directives aim at protection of the 

consumer against unwanted effects of hazardous chemicals in water. Therefore safe bottled seawater 

should fulfil the criteria for chemical parameters as laid down in Directive 98/83/EC
12

 (see Table 5 

Appendix A). Additionally, for two other chemical contaminants, barium and manganese, maximum 

limits have been set in Annex 1 of Commission Directive 2003/04/EC
13

 (see Table 6 Appendix A).  
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It should, however, be noted that Council Directive 98/83/EC
12

 covers drinking water. For the risk 

assessment of chemicals in drinking water usually a consumption of two litres per day by a 60 kg adult 

is considered. Although no data on the consumption of bottled seawater are available, it can be 

assumed that this might be much less since it is not intended for drinking, but for cooking, salad 

dressing and re-vitalisation of live molluscs. Therefore, applying the criteria laid down in Council 

Directive 98/83/EC
12

 will provide a high level of protection for consumers using bottled seawater.  

The levels in seawater presented in Table 1 (Chapter 3.2.3) for the different chemicals are low and all 

below the respective parameter values laid down in the Council Directive, and presented in Table 5 of 

Appendix A, with one exception. The mean occurrence value for boron is 3.6 mg/l (range 

0.7 - 4.9 mg/l), meaning that this value is well above its parameter value of 1 mg/l in Council 

Directive 98/83/EC
12

 and also above the WHO guideline value of 2.4 mg/l.  

Considering reported high levels of boron (up to 4.3 mg/l) in natural mineral waters and the upper 

levels (ULs) established by the NDA Panel (EFSA, 2004), the CONTAM Panel concluded that it is 

very unlikely that adults and children older than 14 years would exceed these ULs even at the highest 

reported levels in bottled natural mineral water. For children from 1 to 14 years of age, a maximum 

limit of 1.5 mg boron/l in bottled natural mineral water would protect these children from exceeding 

the UL. However this latter conclusion was based on the same water consumption estimate as for 

adults. When a more realistic scenario was used, a maximum concentration of 4.3 mg/l would be 

unlikely to lead to exceedance of even the lowest UL value (EFSA, 2005d). It should be noted, 

however, that other sources (i.e. diet) of exposure to boron were not taken into account in this 

assessment.  

Regarding the use of bottled seawater it can be assumed that consumption would be less than that of 

bottled mineral water. However, no data are available on the consumption of bottled seawater. 

Therefore, in the case of boron, operators should measure boron levels in seawater and make an 

assessment of whether these levels might pose a risk for human health considering the consumption of 

bottled seawater. In that case specific treatment with a selective boron ion exchange resin should be 

considered to bring the boron concentration below its parameter value of 1 mg/l.  

Reported concentrations of fluoride in seawater (1.2 – 1.5 mg/l) were in the range of the parameter 

value of 1.5 mg/l in the Council Directive. Although no data on the consumption of bottled seawater 

are available yet, it can be assumed that consumption will be less than for drinking water. Therefore, it 

is unlikely that bottled seawater containing fluoride at concentrations below the parameter value stated 

in Council Directive 98/83/EC
12

 would pose a health concern.  

In Chapter 3.2.3 (Table 1) it was shown that for acrylamide, epichlorohydrin and vinyl chloride no 

occurrence data are available. Since these compounds are particularly used in drinking water treatment 

and transport, it can be expected that the concentration in seawater will be low. It is therefore 

recommended that operators determine the levels of these chemicals in seawater to investigate whether 

continuous monitoring is needed.  

Bromate and trihalomethanes are disinfection by-products that are formed during the use of 

disinfection processes, respectively ozonation or chlorination. In seawater the presence of organic 

matter could contribute to the formation of these hazardous disinfection by-products. But, in particular 

the high concentration of bromide, could be an important contributor. Mean concentrations of bromide 

in seawater have been reported to range from 65 to 70 mg/l, whereas concentrations in fresh water are 

usually lower than 0.2 mg/l (Flury and Papritz, 1993). When UV or other physical methods such as 

filtration are used as disinfection method these disinfection by-products will not be formed and 

operators should consider whether these methods could be used as the preferred disinfection process in 

order to prevent formation of bromate and trihalomethanes.  
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4.8. Proposed criteria to be applied to clean seawater related to phytoplankton/algae  

The presence of toxic algae in source water, particularly in coastal water may pose a potential health 

risk for the consumer. However, due to their size algae can effectively be removed by sand or 

(micro)filtration (see Annex B). Dinoflagellates such as Alexandrium spp., Ostreopsis spp. and Karena 

brevis are nearly spherical and have a diameter ranging from about 20-70 μM. Chondria spp. have a 

different shape and could reach a size of several millimetres.  

Although the presence of toxic algae in clean seawater can effectively be prevented by filtration, it is 

however possible that a certain number of toxic algae cells or toxins, if the cells are disrupted, can 

settle on whole or freshly prepared fishery products. It should be noted, however, that it is expected 

that in that case levels of marine toxins will be much lower than those reached by bio-accumulation of 

toxins in bivalve molluscs or fish.  

The amount of toxin-producing algae cells can vary considerably over the year. Periods of explosive 

growth (‗hazardous algae bloom‘) can occur during changes in weather conditions, but other factors 

such as upwelling, temperature, turbidity, turbulence or salinity of the water may also play a role. 

Human activities can increase nutrient inputs through changes in land-use patterns or changes in the 

hydrology of an area, facilitating occurrence of hazardous algae bloom (FAO, 2004). In addition, also 

hydrographical conditions such as the presence of a thermocline, an upper layer of seawater which 

does not mix with the underlying water layers, is an important factor for algae growth. Therefore, the 

operator should monitor the conditions that affect blooms of toxic algae with the aim of preventing 

human exposure.  

Therefore local conditions such as: 

 Municipal pollution 

 Euthrophication 

 Turbidity  

 Temperature   

 Algae growth/proliferation 

should be monitored.  

In addition, consideration should be given to the conditions for abstraction of the source water: 

 During high tide 

 Not during periods of dredging or storms 

 Deep in the water column, preferentially offshore.  

4.8.1. Methods to monitor hazardous algae bloom  

There are no prescribed, official, methods or programmes to monitor hazardous algae bloom. 

Historically, detection of algae has relied on microscopic methods for distinguishing morphological 

characters, but this is a rather laborious task. Nowadays, the development of molecular probes is 

enabling detection of lower concentrations of cells, and provides the potential to allow for 

discrimination of unique algae species. Remote sensing techniques, including satellite and airplane 

over flights, as well as in situ devices, hold great promise for improvement of monitoring hazardous 

algae bloom (National Sea Grant College Program, 2001; Hallegraeff et al., 2003). 

4.9. Detection methods to verify compliance with chemical criteria  

Performance characteristics for the method of analysis for the chemical parameters included in 

Directive 98/83/EC
12

 have specified in Annex III, article 2 of this directive.  
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CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS 

 Based on incidents of food and waterborne infection, the properties and the distribution of the 

agents, microbiological hazards (including viruses, bacteria and parasites) have been identified as 

associated with seawater. Poor quality sea water may consequently have a severe impact on public 

health through contamination which may occur during food processes. The hazards are associated 

either with bacteria which are part of the natural marine biota (in particular Vibrio spp.), or 

pathogenic microbes derived from animal or human faecal contamination, which is most often of 

terrestrial origin.  

 There is currently not sufficient data on microbiological hazards to estimate the public health risks 

associated with the uses in on-land establishments for handling and washing fishery products, for 

the production of ice used for chilling, for rapid cooling of crustaceans and molluscs after cooking, 

and for bottled seawater.  

 In the absence of data to propose risk-based criteria, hazard-based criteria are proposed instead, 

These should provide the same level of health protection as achieved by other food business 

operators through the use of potable water.  

 Coastal sources, used for abstraction of seawater in land-based establishments, cannot be 

guaranteed to be free from pathogens from the marine biota or from faecal contamination, and 

cannot be classified as a pristine source. 

 Sanitary surveys provide information to optimize the site of abstraction in order to control sources 

of faecal pollution and chemical contamination. Additional safeguards will be needed to reduce 

contamination from endogenous marine flora (including pathogenic Vibrio spp. and C. botulinum). 

Since these hazards are associated with temperature and salinity (Vibrio spp.) as well as sediments 

(C. botulinum), abstracting seawater with high salinity (especially in waters of temperatures below 

20 ºC), and free from particulate material will improve safety of seawater prior to treatment.  

 The comprehensiveness of the sanitary survey, the stringency of microbiological criteria and the 

need for treatment will depend on the relative exposures associated to the different uses of clean 

seawater;  

o When seawater is used for purposes that do not involve a direct contact with food 

(physical cleaning operations of utilities, surfaces, floors, equipment in facilities such 

as fish markets, auctions, fishery ports) or do not convey a contamination risk with 

prepared fishery products (e.g. handling and washing whole fishery products), it is 

considered that the exposure will be low. For these uses, a basic sanitary survey and 

microbiological criteria based on the Directive 2006/7/EC are considered appropriate. 

o Higher exposure to microbiological hazards will occur where seawater will be in 

contact with prepared, processed, and/or ready-to-eat fishery products. For these uses, 

a more comprehensive sanitary survey, mandatory water treatment and 

microbiological criteria based on Council Directive 98/83/EC and an additional 

criterion for Vibrio spp. are considered appropriate. 

o Highest exposure to microbiological hazards occurs where seawater is used for 

revitalisation of live bivalve molluscs, as a component of salad dressings or other 

similar uses as ingredient of ready-to-eat products. For these uses, a more 

comprehensive sanitary survey, mandatory water treatment and microbiological 

criteria based on Council Directive 98/83/EC for water offered for sale in bottles and 

an additional criterion for turbidity and Vibrio spp. are considered appropriate. 
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 For verification of treatments, detection methods for E. coli and enterococci are defined in the 

international standards (ISO 9308-3 or ISO 9308-1 for E. coli and ISO 7899-1 or ISO 7899-2 for 

enterococci). Reference methods for the detection of Vibrio in seawater have not been evaluated.  

 The concentration of chemicals in bottled seawater should comply with the maximum levels for 

chemical contaminants (parameter values) as laid down in Council Directive 98/83/EC on the 

quality of water intended for human consumption.  

 Concentrations of boron in seawater are well above the parameter value of 1 mg/l. Therefore 

operators should measure boron levels in seawater and make an assessment of whether these levels 

might pose a risk to human health, given the consumption of bottled seawater, and consider 

whether treatment with a selective boron ion exchange resin is needed to bring the boron 

concentration below its parameter value.  

 Appropriate treatment (filtration) is needed to prevent a potential health risk from the presence of 

toxic algae in source water.  

RECOMMENDATIONS 

 Reference methods for the detection of Vibrio in seafood (ISO/TS 21872-1:2007 or ISO/TS 

21872-2:2007) should be applied to seawater with appropriate modification. Alternatively, a 

membrane filtration on a selective medium for Vibrio on the basis of other ISO standard methods 

for the examination of water can be applied for measuring the total number of Vibrio in seawater. 

These should be evaluated involving multi-laboratory comparison, the use of external quality 

assessment and appropriate reference materials. 

 Further guidance and documentation should be made available for sanitary survey and percentile 

calculations for managers of on-land establishments. 

 Data on the consumption of clean seawater are needed to facilitate further risk assessments. 

 Operators should determine the levels of acrylamide, epichlorohydrin and vinyl chloride in 

seawater to investigate whether continuous monitoring is needed. 

 Since ultraviolet or other physical methods do not result in the production of hazardous 

disinfection by-products such as bromate and trihalomethanes, it is recommended to use these 

methods as the preferred disinfection process. 
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APPENDICES 

A.  CURRENT EU LEGISLATION 

Parameter Guide Mandatory Method Legislation 

Faecal coliforms/100 ml ≤ 300 in the 

shellfish 

flesh and 

intervalvular 

liquid 

 Method of dilution with fermentation in liquid substrates in 

at least three tubes in three dilutions. Subculturing of the 

positive tubes on a confirmation medium, Count according 

to MPN. Incubation temperature 44˚C ± 0.5˚C  

Directive 2006/113/EC on the quality required for 

shellfish waters 

Total coliforms/100ml 500 10,000 Fermentation in multiple tubes. Subculturing of positive 

tubes on a confirmation medium. Count according to MPN 

or membrane filtration and culture on an appropriate 

medium such as Tergitol lactose agar, endo agar, 0.4 % 

Teepol broth, subculturing and identification of the suspect 

colonies. 

Council Directive of 8 December 1975 

concerning the quality of bathing water 

(76/160/EEC) 

Faecal coliforms/100 ml 100 2,000 Fermentation in multiple tubes. Subculturing of positive 

tubes on a confirmation medium. Count according to MPN 

or membrane filtration and culture on an appropriate 

medium such as Tergitol lactose agar, endo agar, 0.4 % 

Teepol broth, subculturing and identification of the suspect 

colonies.  

Council Directive of 8 December 1975 

concerning the quality of bathing water 

(76/160/EEC) 

Faecal streptococci/     

100 ml 

100 - Litsky method. Count according to MPN or filtration on 

membrane. Culture on an appropriate medium. Fermentation 

in multiple tubes. Subculturing of positive tubes on a 

confirmation medium. Count according to MPN or 

membrane filtration and culture on an appropriate medium 

such as Tergitol lactose agar, endo agar, 0.4 % Teepol broth, 

subculturing and identification of the suspect colonies. 

Council Directive of 8 December 1975 

concerning the quality of bathing water 

(76/160/EEC) 

Salmonella/1 l - 0 Concentration by membrane filtration. Inoculation on a 

standard medium. Enrishment – subculturing on isolating 

agar - identification 

Council Directive of 8 December 1975 

concerning the quality of bathing water 

(76/160/EEC) 

Enteric viruses PFU/10 l - 0 Concentration by filtration, flocculation or centrifuging and 

confirmation. 

Council Directive of 8 December 1975 

concerning the quality of bathing water 

(76/160/EEC) 

Escherichia coli/250 ml  0  Council Directive 98/83/EC of 3 November 1998 

on the quality of water intended for human 

consumption 
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Parameter Guide Mandatory Method Legislation 

Enterococci/250 ml  0  Council Directive 98/83/EC of 3 November 1998 

on the quality of water intended for human 

consumption 

Pseudomonas 

aeruginosa/250 ml 

 0  Council Directive 98/83/EC of 3 November 1998 

on the quality of water intended for human 

consumption 

Colony count 22˚C  100  Council Directive 98/83/EC of 3 November 1998 

on the quality of water intended for human 

consumption 

Colony count 37˚C  20  Council Directive 98/83/EC of 3 November 1998 

on the quality of water intended for human 

consumption 

Escherichia coli and 

other coliforms/250 ml 

 0 Rivivable colony count. Incubation temperature 37˚C and 

44.5˚C  

Directive 2009/54/EC on the exploitation and 

marketing of natural mineral waters 

Faecal streptococci/250 

ml 

 0  Directive 2009/54/EC on the exploitation and 

marketing of natural mineral waters 

Sporulated sulphite-

reducing anaerobes/    

50 ml 

 0  Directive 2009/54/EC on the exploitation and 

marketing of natural mineral waters 

Pseudomonas 

aeruginosa/250 ml 

 0  Directive 2009/54/EC on the exploitation and 

marketing of natural mineral waters 

Parasites  0 (absence)  Directive 2009/54/EC on the exploitation and 

marketing of natural mineral waters 

Pathogens  0 (absence)  Directive 2009/54/EC on the exploitation and 

marketing of natural mineral waters 

 



Hygiene criteria to be applied to clean seawater 

 

EFSA Journal 2012;10(3):2613 72 

1. MICROBIOLOGICAL CRITERIA FOR DRINKING WATER IN EU LEGISLATION 

The Directive (Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for 

human consumption
22

) is intended to protect human health by laying down healthiness and purity 

requirements which must be met by drinking water within the European Union. It applies to all water 

intended for human consumption apart from natural mineral waters and waters which are medicinal 

products and establishes strict quality standards for water used for human consumption. Maximum and 

guideline values for various physical, bacteriological and chemical contaminants are set out.  

Table 1:  Microbiological criteria for drinking water (Council Directive 98/83/EC)  

Parameter Parametric value (number per 100 ml)
 

E. coli  0 

Enterococci 0 

The following applies to water offered for sale in bottles or containers 

E. coli 0/250 ml 

Enterococci 0/250 ml 

Pseudomonas aeruginosa 0/250 ml 

Colony count 22˚C 100/ ml 

Colony count 37˚C 20/ ml 

2. MICROBIOLOGICAL CRITERIA FOR DRINKING WATER AS SUGGESTED BY WHO 

Table 2:  Microbiological criteria for drinking water (WHO
23

) 

Parameter Parametric value (number per 100 ml)
 

E. coli or thermotolerant coliform bacteria
23

 0 

Total coliform bacteria 0 

1. Immediate investigative action must be taken if either E. coli or total coliform bacteria are detected. The minimum action 

in the case of total coliform bacteria is repeat sampling; if these bacteria are detected in the repeat sample, the cause must 

be determined by immediate further investigation. 

2. Although E. coli is the more precise indicator of faecal pollution, the count of thermotolerant coliform bacteria is an 

acceptable alternative. If necessary, proper confirmatory tests must be carried out. Total coliform bacteria are not 

acceptable indicators of the sanitary quality of rural water supplies, particularly in tropical areas where many bacteria of no 

sanitary significance occur in almost all untreated supplies. 

3. It is recognized that, in the great majority of rural water supplies in developing countries, faecal contamination is 

widespread. Under these conditions, the national surveillance agency should set medium-term targets for the progressive 

improvement of water supplies, as recommended in Volume 3 of Guidelines for drinking-water quality. 

3. MICROBIOLOGICAL CRITERIA FOR BATHING WATERS 

Directive 76/160/EEC of 8 December 1975 concerning the quality of bathing water covers the quality 

of bathing waters for protecting human health and for reasons of amenity and seeks to ensure that 

quality is raised over time largely by ensuring sewage is not present or has been adequately diluted or 

destroyed. Bathing waters are defined as "fresh or sea water in which bathing is explicitly authorised 

or is not prohibited and is traditionally practised by a large number of bathers‖.  

A new Directive on bathing water (Directive 2006/7/EC) came into force on 24 March 2006 and will 

repeal the existing 1976 Directive with effect from 31 December 2014. The new Directive establishes 

                                                      
22  OJ L 330, 5.12.1998, p. 32–54 
23  Assessment and Management of Seafood Safety and Quality, By H.H. Huss, L. Ababouch, L. Gram,  Food and 

Agriculture Organization (FAO) of the United Nations, Rome, 2003                                                                                       

ftp://ftp.fao.org/docrep/fao/006/y4743e/y4743e00.pdf 

ftp://ftp.fao.org/docrep/fao/006/y4743e/y4743e00.pdf
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stricter microbiological standards for two new parameters, Intestinal enterococci and Escherichia coli, 

which will be used to classify bathing waters as 'poor', 'sufficient', 'good' and 'excellent'. 

 

Table 3:  Microbiological parameters for coastal and transitional waters (Directive 2006/7/EC)  

Parameter Excellent quality
 

Good quality
 Sufficient Reference method of analysis 

Intestinal enterococci 

(cfu/100ml) 

 

100(*) 200(*) 185(*) ISO 7899-1 or 

ISO 7899-2 

E. coli (cfu/100 ml) 250(*) 500(*) 500(*) ISO 9308-3 or 

ISO 9308-1 

(*) Based upon a 95‑ percentile evaluation. See Annex II of Directive. 

 

4. MICROBIOLOGICAL CRITERIA FOR SHELLFISH WATERS IN EUROPE 

Harmonised criteria on the quality required for shellfish waters are established in Directive 

2006/113/EC of the European Parliament and of the Council of 12 December 2006
24

. Shellfish waters 

are those coastal and brackish waters designated by the Member States as needing protection or 

improvement in order to support (bivalve and gastropod) molluscs life and growth and thus to 

contribute to the high quality of edible shellfish products. The Directive establishes physical, chemical 

and microbiological requirements that designated shellfish waters must either fulfil or attempt to 

improve, as some of which are mandatory while others are guidelines. 

Table 4:  Microbiological parameters for shellfish waters (Directive 2006/113/EC) 

Parameter Guide
 

Mandatory
 

Reference method of analysis
 

Minimum 

sampling and 

measuring 

frequency 

Faecal 

coliforms/

100 ml 

≤ 300 in the 

shellfish flesh and 

intervalvular 

liquid 

 Method of dilution with fermentation in 

liquid substrates in at least three tubes in 

three dilutions. Sub-culturing of the 

positive tubes on a confirmation medium. 

Count according to MPN (most probable 

number). Incubation temperature 44 ˚C ± 

0.5 ˚C  

Quarterly 

 

5. MICROBIOLOGICAL CRITERIA FOR SHELLFISH GROWING WATERS IN USA AND CANADA 

The National Shellfish Sanitation Program (NSSP) has issued guidelines to identify survey and 

classify shellfish growing waters
25

. Classification status is based on sanitary surveys of water quality 

and shoreline surveys of pollution sources. Individual growing areas are classified either as approved 

for harvest or as one of four harvest-limited categories: (1) conditionally approved, (2) restricted, (3) 

conditionally restricted, or (4) prohibited. All identified growing waters must be classified as 

prohibited unless sanitary surveys indicate that water quality meets specific NSSP standards for the 

other categories.  

 Approved: waters from which shellfish may be harvested for direct marketing. Fecal coliform 

median or geometric mean MPN does not exceed 14 per 100 ml, and not more than 10 percent of 

the samples exceed an MPN of 43 per 100 ml for a 5-tube decimal dilution test. 

                                                      
24  OJ L 376, 27.12.2006, p. 14–20 
25  www.fda.gov/Food/FoodSafety/Product-

SpecificInformation/Seafood/FederalStatePrograms/NationalShellfishSanitationProgram/ucm046353.htm 
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 Conditionally approved: waters meeting approved classification standards under predictable 

conditions. These waters are open to harvest when water quality standards are met, and are closed 

at other times. Fecal coliform standards are the same as for approved. 

 Conditionally restricted: growing waters that sometimes meet the criteria to be restricted; may be 

harvested if shellfish are subjected to a suitable purification process. 

 Restricted: waters from which shellfish may be harvested only if they are relayed or depurated 

before direct marketing. Fecal coliform median or geometric mean MPN does not exceed 88 per 

100 ml, and not more than 10 percent of the samples exceed an MPN of 260 per 100 ml for a 5-

tube decimal dilution test. 

 Prohibited: waters from which shellfish may not be harvested for marketing under any conditions. 

The water quality criteria for shellfish growing areas in Canada (British Columbia)
26

 are similar to the 

US. Faecal coliforms in fresh and marine waters used for the growing and harvesting of shellfish for 

human consumption should not exceed a median MPN of 14/100 ml over 30 days, and at least 90 % of 

the samples in a 30-day period should not exceed 43/100 ml. Enterococci in fresh and marine waters 

used for the growing and harvesting of shellfish for human consumption should not exceed a median 

MPN of 4/1 00 ml, and at least 90 % of the samples in a 30-day period should not exceed 11/100 ml. 

In addition, the meat of shellfish must meet a maximum criterion of 230 faecal coliforms/100 g wet 

weight. The criteria for faecal coliforms are the only ones that apply now. 

6. CHEMICAL CRITERIA FOR DRINKING WATER IN EU LEGISLATION 

To protect the health of the consumer chemical criteria for the quality of potable water have been laid 

down in Council Directive 98/83/EC
12

 on the quality of water intended for human consumption. The 

different chemicals and their parametric value are presented in Table 5.  

 

                                                      
26

  Canadian Council of Resource and Environment Ministers, CCREM. Canadian water quality guidelines. 

Task Force on Water Quality Guidelines, 1987 
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Table 5:  Chemical parameters laid down in Annex 1, part B, of Council Directive 98/83/EC
12

 on 

the quality of water intended for human consumption.   

Parameter Parametric value 
 

Unit 
 

Acrylamide 0.10 μg/l 

Antimony 5.0 μg/l 

Arsenic 10 μg/l 

Benzene 1.0 μg/l 

Benzo(a)pyrene 0.010 μg/l 

Boron 1.0 mg/l 

Bromate 10
a
 μg/l 

Cadmium 5.0 μg/l 

Chromium 50 μg/l 

Copper 2.0 mg/l 

Cyanide 50 μg/l 

1,2-Dichloroethane 3.0 μg/l 

Epichlorohydrin 0.10 μg/l 

Fluoride 1.5 mg/l 

Lead 10 μg/l 

Mercury 1.0 μg/l 

Nickel 20 μg/l 

Nitrate 50
b
 mg/l 

Nitrite 0.50
b
 mg/l 

Pesticides 0.10
c,d

 μg/l 

Pesticides - Total 0.50
c,e

 μg/l 

Polycyclic aromatic hydrocarbons 0.10
f
 μg/l 

Selenium 10 μg/l 

Tetrachloethene and Trichloroethene (sum) 10 μg/l 

Trihalomethanes - Total 100
g
 μg/l 

Vinyl chloride 0.50 μg/l 

a)  Where possible, without compromising disinfection, Member States should strive for a lower value. 

b)  Member States must ensure that the condition that [nitrate]/50 + [nitrite]/3 < 1, the square brackets signifying the 

concentrations in mg/l for nitrate (NO3) and nitrite (NO2), is complied with and that the value of 0.10 mg/l for nitrites is 

complied with ex water treatment works. 

c)  ‗Pesticides‘ means: organic insecticides, organic herbicides, organic fungicides, organic nematocides, organic acaricides, 

organic algicides, organic rodenticides, organic slimicides, related products (inter alia, growth  regulators) and their 

relevant metabolites, degradation and reaction products. Only those pesticides which are likely to be present in a given 

supply need be monitored. 

d)  The parametric value applies to each individual pesticide. In the case of aldrin, dieldrin, heptachlor and heptachlor 

epoxide the parametric value is 0.030 µg/l. 

e)  ‗Pesticides — Total‘ means the sum of all individual pesticides detected and quantified in the monitoring procedure.  

f)  The specified compounds are benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, and indeno(1,2,3-cd) 

pyrene. 

g)  Where possible, without compromising disinfection, Member States should strive for a lower value. The specified 

compounds are: chloroform, bromoform, dibromochloromethane, bromodichloromethane 
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7. CHEMICAL CRITERIA FOR NATURAL MINERAL WATER IN EU LEGISLATION 

The protect the health of the consumer quality criteria have been laid down in Commission Directive 

2003/04/EC,
13

 establishing the list, concentration limits and labelling requirements for the constituents 

of natural mineral waters. The maximum limits, which, if exceeded, may pose a risk to public health 

as laid down in Annex 1 of this Directive are presented in Table 6.  

Table 6:  Maximium limits for constituents naturally present in natural mineral waters as laid down 

in Annex 1 of Commission Directive 2003/04/EC.
 13

  

Constituents Maximum limits (mg/l) 
 

Antimony 0.0050 

Arsenic 0.010 (as total) 

Barium 1.0 

Boron For the record (*) 

Cadmium 0.003 

Chromium 0.050 

Copper 1.0 

Cyanide 0.070 

Fluoride 5.0 

Lead 0.010 

Manganese 0.50 

Mercury 0.0010 

Nickel 0.020 

Nitrates 50 

Nitrites 0.1 

Selenium 0.010 

(*) The maximum limit for boron will be fixed, where necessary, following an opinion  of the European Food Safety 

Authority and on a proposal from the Commission by  1 January 2006.  
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B.  TREATMENTS OF SEAWATER  

1. WATER TREATMENT METHODS 

There are several treatment methods used to produce safe and clean water, and to remove/prevent 

unpleasant taste and odour. The main treatment methods will be described briefly below. Preliminary 

treatment of water by coagulation settlement or sand filtration will remove turbidity that may interfere 

with many of the disinfection processes. A summary of water treatment methods is given in a 

technical manual published by the Scottish Executive (2006
27

). Some additional considerations with 

regard to seawater are given in a manual on bivalve depuration published by FAO (2008). 

1.1 Chemical coagulation 

Chemical coagulation is the most common approach for treatment of surface waters. Salts of 

aluminium or iron, are dosed to the source water to remove suspended and dissolved contaminants. 

The efficiency of the coagulation process depends on the raw water quality, the coagulant used and 

operational factors, including mixing conditions, coagulation dose and pH. The floc which is formed is 

removed from the treated water by subsequent processes such as sedimentation or filtration. 

Coagulation is suitable for removal of particulates and bound microorganisms, certain heavy metals 

and low-solubility organic chemicals, such as certain organochlorine pesticides. For other organic 

chemicals, coagulation is generally ineffective, except where the chemical is adsorbed to humid 

material or particulates. 

1.2 Sand filtration  

Slow sand filters are used to remove algae and microorganisms, including protozoa, and, if preceded 

by microstraining or coarse filtration, to reduce turbidity, including adsorbed chemicals. Slow sand 

filtration is also effective for the removal of some organic compounds, including certain pesticides. 

1.3 Microfiltration 

Microfiltration uses membranes that can exclude particles that are larger than 0.05μm. This means that 

bacteria, protozoal cysts and algae will be removed from the water although viruses may pass through. 

Salt molecules will cross the membrane and so the process is applicable to seawater. Membranes with 

smaller pore sizes, e.g. those used for nanofiltration, will also exclude viruses. 

1.4 Ultraviolet irradiation 

Ultraviolet (UV) disinfection is achieved by passing water through units containing lamps that have 

their main output in the UVc region of the spectrum (200 to 280nm; peak microbiocidal wavelength 

254nm). There are two main types of lamp: low pressure and medium pressure. The latter are used for 

high-throughput systems. The design of unit may vary but smaller units will use a UV-producing tube 

within a quartz sleeve with the water passing down the space between the tube and the sleeve. The UV 

dose that is received by the target microbes will depend on the output of the unit, the flow rate of the 

water through the unit and the transmissivity of the water (ability for UV to pass through). Much 

higher doses of UV are required to inactivate viruses than bacteria. 

The efficiency of UV output in the target range decreases with use. Manufacturers generally specify 

lifetimes that equate to a remaining efficiency of 80 percent of the original. It is the output at the end 

of the rated life-time that should be used in determining the size of a UV unit needed for a specific 

system. The transmissivity depends on several factors, including the turbidity of the seawater and the 

presence of dissolved inorganic salts or organic material. If a quartz-sleeve system is used, the amount 

of UV light reaching the water will also depend on the state of cleanliness of that sleeve. UV dosage 

can be quoted as either the applied dose (usually calculated from the output of the lamp - either 

theoretical or measured) and the transmissivity of the water, or as the received dose (actually measured 

                                                      
27

  Scottish Executive, 2006. Private Water Supplies:Technical Manual. Section 6. Water Treatment Processes. 

Edinburgh, Scottish Executive. 
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at the wall of the tube containing the lamp). In practice, accurate measurement of received UV dose 

has proved to be difficult to achieve. 

1.5 Chlorination 

Chlorination is achieved by adding chlorine gas, chlorine dioxide, sodium hypochlorite, calcium 

hypochlorite or monochloramine. With seawater, it may also be generated in situ using electrolysis. 

The disinfection efficiency is affected by the following factors: concentration of available chlorine, 

degree of mixing, contact time, pH, water temperature, turbidity and interfering substances. Chlorine 

combines with any ammonia in the water to produce chloramines. It is mainly the free chlorine, and to 

a lesser extent the monochloramine, which cause the disinfection. 

Chlorine is effective against bacteria but less so against some viruses. The infective stage of some 

parasites, such as the cysts of Giardia duodenalis and, to a greater extent, the oocysts of 

Cryptosporidium spp., are resistant to chlorine at the normal concentrations used for the disinfection of 

drinking water. 

The effectiveness of chlorination is determined using CT values. The CT value is calculated by 

multiplying the concentration of free chlorine in mg/l by the contact time in minutes. Usually, a 

minimum CT value of 6 is targeted (e.g. at least 0.2 mg/l free chlorine for 30 minutes) in order to 

achieve disinfection of bacteria and viruses. This assumes that the other factors such as pH and 

temperature are optimal. Maintenance of a concentration of residual free chlorine after treatment 

ensures that bacterial regrowth does not occur.  

The possible formation of potentially toxic compounds such as chloramines or other by-products when 

adding chlorine to seawater should be considered. Chlorination of water containing organic material 

will result in the production of by-products such as trihalomethanes (THM) and halogenated acetic 

acids (HAA). Treatment of water prior to chlorination can minimize toxic by-product formation. 

Free chlorine in water is usually measured using a method based on diethyl paraphenylene diamine 

(DPD). This chemical is oxidised by chlorine to produce a coloured compound. Total chlorine can be 

measured by adding potassium iodide to the reaction after the free chlorine result has been recorded. 

Continuous chlorine monitors are available for process control. 

1.6 Ozonation 

Ozone is very effective at inactivating both bacteria and viruses. It is also fairly effective against the 

oocysts of Cryptosporidium. It may be purchased as the gas form in cylinders or produced on-site by 

means of high energy electrical discharge or UV light (peak wavelength at 185 nm rather than the 

254 nm used for UV disinfection). The ozone is then introduced into the water via a diffuser in order 

to get good mixing. Ozone is a relatively expensive form of disinfection and the gas is very toxic.  

In seawater, ozone may oxidise any bromide to bromate, which is of concern as a carcinogen. To 

minimize this effect, ozone should not be used with a concentration exceeding 0.5 mg/l (the usual 

concentration is approximately 0.4 mg/l).  

Although ozone breaks down rapidly, ozonation is applied, e.g. in bivalve mollusc purification 

systems. For this application, ozonization is undertaken in a separate tank to that used for depuration 

and then the residual ozone has to be discharged from the seawater before use so that it does not 

adversely affect the animals – this is achieved by forced aeration or activated carbon filtration. Where 

a continued bactericidal effect is required, supplementary low-level chlorination may be applied. 

1.7 Distillation 

Distillation is used to produce some bottled drinking waters. The resulting water is free from micro-

organisms and other impurities. Ice for use in drinks may also be made from such water. The process 
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is obviously not applicable to the production of disinfected seawater as the product will not contain 

any sea salt. 

1.8 Reverse osmosis 

Reverse osmosis is the flow of solute through a semi-permeable membrane from a higher 

concentration to a lower concentration by applying pressure to the high concentration side. Membrane 

pore sizes are less than 0.002 μm and so micro-organisms will be excluded. However, salt molecules 

are also retained by the membrane and so the process is not applicable to seawater. 

1.9 Activated carbon 

Activated carbon is normally used as powdered activated carbon (PAC) or in granular form (GAC). 

GAC has a high affinity for organic compounds. It is normally used in fixed beds, either in absorbers 

for specific chemicals or in sand filters to replace sand with GAC of a similar particle size. It is 

common practice to install GAC absorbers between the filtration and the disinfection steps. Different 

types of GAC vary considerably in their capacity for specific organic compounds, which can have a 

significant effect upon their service life. GAC is used for the removal of pesticides and other organic 

chemicals, taste and odour compounds, cyanobacterial toxins and total organic carbon. 

1.10 Ion exchange 

Ion exchange is a process in which ions are exchanged between the water and the solid resin phase. 

Ion exchange can be used to remove contaminants such as nitrate, boron, fluoride, or uranium. Several 

resins are available for this purpose 

2. Application of disinfection methods to the disinfection of seawater 

Most bottled waters are taken from springs or groundwater sources and, in general, the source water 

tends to have low levels of particulate and organic matter. Such sources may be sufficiently protected 

to be consumed without any treatment. Seawater however may contain significant amounts of 

particulate and organic matter. The levels of these may vary with location, tidal state and season.  

Depending on the geographical area, seawater may also contain significant levels of pathogens, either 

naturally occurring (such as some Vibrio spp.) or derived from faecal contamination (e.g. epidemic V. 

cholerae, Salmonella, norovirus). There is therefore the need to consider the location and timing of 

extraction of seawater for treatment so that the subsequent processes are able to produce a good 

quality safe product. The application of methods such as settlement or sand filtration will remove 

material that will interfere with the disinfection processes. Lastly, there may be the need to use 

additional steps such as activated carbon filtration that will remove other contaminants or disinfection 

by-products. Some water treatment systems include a series of treatment steps: sand filtration, 

ozonation, activated carbon filtration and then UV. 

3. Monitoring of disinfection processes 

Turbidity can be monitored continuously to ensure that it is less than the critical limit defined for the 

process. With UV systems, there is a need to ensure that the lamps are functioning and within their 

specified lifetime. Chlorination and ozonation processes can be monitored continuously online and 

samples can also be taken for chemical confirmation of the disinfectant concentration. Membrane 

processes such as reverse osmosis and microfiltration can be monitored by pressure differential across 

the membrane or turbidity measurement or particle counting of the filtrate: satisfactory results in these 

tests may not mean that pathogens have not passed through the membrane due to imperfections. 

Microbiological monitoring is usually based on a combination of bacterial viable counts and faecal 

indicator testing. These may be supplemented with tests for specific pathogens. 
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Table 7:  Monitoring criteria for water treatments 

 Monitoring criteria 

Disinfection 

method 

Pre-disinfection 

(post-settlement 

or filtration) 

Disinfection Post-disinfection 

Microfiltration 

Turbidity 

Pressure across membrane (usually 

1-2 bar) 

Turbidity or particle analysis 

UV irradiation Flow, lamps working,  applied dose  

Lamp-life log 

 

Chlorination pH 

Free chlorine and/or 

monochloramine concentration 

Contact time 

Residual chlorine concentration 

Ozonation Redox potential 

Ozone concentration 

Ozone concentration  
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C.  OUTLINE DESCRIPTIONS OF STANDARD METHODS 

Parameter Method Outline descriptions 

Escherichia coli EN ISO 9308-3  Water Quality – Detection and enumeration of Escherichia coli and 

coliform bacteria in surface and waste water – Part 3. 

This method provides a most probable number estimation of the 

numbers of E. coli by inoculation of water samples into a liquid 

medium. The method is applicable to all types of surface and waste 

waters (including seawater), particularly those rich in suspended 

matter. Diluted samples and inoculated into microtitre plate wells 

containing dehydrated MUG/EC medium (methylumberlliferyl- -D-

glucuronide). Following incubation at 44 °C for 36-72 hrs, the presence 

of E. coli is indicated by blue fluorescence resulting from hydrolysis of 

the MUG detected in a UV observation chamber. 

Escherichia coli EN ISO 9308-1 Water Quality – Detection and enumeration of Escherichia coli and 

coliform bacteria – Part 1. 

This method is based on membrane filtration of water samples, 

subsequent culture on a differential agar medium and calculation of the 

number of target organisms in the sample. This method provides a 

rapid method for the detection of E. coli within 24 hrs which is 

applicable to waters with low bacterial numbers or a standard method 

which takes 2-3 days. The standard and rapid methods can be applied 

to waters provided suspended matter or background flora does not 

interfere with filtration, culture and counting. The standard method 

involves incubation of the membrane on selective lactose agar, 

incubated at 36 °C for 21 hrs. For the rapid test involves incubation of 

the membrane on casein (tryptic digest) agar, incubated at 36 °C for  

4-5 hrs followed by incubation 44 °C for 20 hrs on a medium 

containing casein (tryptic digest) agar containing bile salts.  

Characteristics lactose fermenting colonies are counted and randomly 

selected for subculture and confirmation using oxidase and indole 

production.  

Enterococci EN ISO 7899-1  Water quality – Detection and enumeration of intestinal 

enterococci in surface and waste water – Part 1. 

This method provides a most probable number estimation of the 

numbers of enterococci by inoculation of water samples into a liquid 

medium. The method is applicable to all types of surface and waste 

waters (including seawater), particularly those rich in suspended 

matter. Diluted samples and inoculated into microtitre plate wells 

containing dehydrated MUD medium (4-methylumberlliferyl- -D-

glucoside) containing tallium acetate, nalidixic acid and 

triphenyltetrazolium chloride. Following incubation at 44 °C for 36-72 

hrs, the presence of enterococci is indicated by fluorescence resulting 

from hydrolysis of the MUD detected in a UV at 366 nm. 

Enterococci EN ISO 7899-2 Water quality – Detection and enumeration of intestinal 

enterococci – Part 2. 

 This method is based on membrane filtration of water samples, 

subsequent culture on a differential agar medium and calculation of the 

number of target organisms in the sample. The method can be applied 

to all types of waters (including seawater) except when a large amount 

of suspended matter or interfering micro-organisms are present.  The 

method involves incubation of the membrane on to selective agar 

containing sodium azide and, triphenyltetrazolium chloride incubated 

at 36 °C for 44 hrs.  Characteristics colonies are counted and the 

membrane is transferred to bile-aesculin agar preheated to 44 °C. 

Enterococci  hydrolyse the aesculin within 2 hrs. 
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Parameter Method Outline descriptions 

Vibrio ISO/TS 21872-

1:2007 
Microbiology of food and animal feeding stuffs -- Horizontal 

method for the detection of potentially enteropathogenic Vibrio 

spp. -- Part 1: Detection of Vibrio parahaemolyticus and Vibrio 

cholera 
This part of ISO/TS 21872 specifies a horizontal method for the 

detection of the two main pathogenic Vibrio species causing intestinal 

illness in humans: V. parahaemolyticus and V. cholerae. It is applicable 

to products intended for human consumption and the feeding of 

animals, and environmental samples in the area of food production and 

food handling. The detection of Vibrio parahaemolyticus and Vibrio 

cholerae requires four successive phases including two enrichments in 

a liquid selective broths, isolation and identification of presumptive 

colonies using two solid selective media (thiosulfate citrate bile and 

sucrose agar, TCBS, and another appropriate solid selective medium) 

and a final confirmation by means of appropriate biochemical tests. 

Vibrio ISO/TS 21872-

2:2007 
Microbiology of food and animal feeding stuffs -- Horizontal 

method for the detection of potentially enteropathogenic Vibrio 

spp. -- Part 2: Detection of species other than Vibrio 

parahaemolyticus and Vibrio cholerae 

This method specifies a horizontal method for detection of the 

enteropathogenic Vibrio species, causing illness in or via the intestinal 

tract, other than Vibrio parahaemolyticus and Vibrio cholerae. The 

species detectable by the methods specified include Vibrio 

fluvialis, Vibrio mimicus and Vibrio vulnificus. It is not suitable for the 

isolation of Vibrio hollisae. Strains of V. parahaemolyticus and V. 

cholerae may also be detected during the application of this method. 

ISO/TS 21872-2:2007 is applicable to products intended for human 

consumption and the feeding of animals, and environmental samples in 

the area of food production and food handling. This method is not 

appropriate for the detection of Vibrio metschnikovii as this is oxidase 

negative 
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GLOSSARY 

Regulation (EC) No 852/2004 defines: 

‘Clean seawater’ as "natural, artificial or purified seawater or brackish water that does not contain 

micro-organisms, harmful substances or toxic marine plankton in quantities capable of directly or 

indirectly affecting the health quality of food"  

‘Clean water’ means clean seawater and fresh water of a similar quality; 

‘potable water’ means water meeting the minimum requirements laid down in Council Directive 

98/83/EC of 3 November 1998 on the quality of water intended for human consumption (1); 

COUNCIL DIRECTIVE 98/83/EC defines: 

‘water intended for human consumption’ shall mean:  

a) all water either in its original state or after treatment, intended for drinking, cooking, food 

preparation or other domestic purposes, regardless of its origin and whether it is supplied from 

a distribution network, from a tanker, or in bottles or containers;  

b) all water used in any food-production undertaking for the manufacture, processing, 

preservation or marketing of products or substances intended for human consumption unless 

the competent national authorities are satisfied that the quality of the water cannot affect the 

wholesomeness of the foodstuff in its finished form. 

Regulation (EC) No 853/2004 defines: 

‘Fishery products’ means all seawater or freshwater animals (except for live bivalve molluscs, live 

echinoderms, live tunicates and live marine gastropods, and all mammals, reptiles and frogs) whether 

wild or farmed and including all edible forms, parts and products of such animals. 

‘Fresh fishery products’ means unprocessed fishery products, whether whole or prepared, including 

products packaged under vacuum or in a modified atmosphere, that have not undergone any treatment 

to ensure preservation other than chilling. 

‘Prepared fishery products’ means unprocessed fishery products that have undergone an operation 

affecting their anatomical wholeness, such as gutting, heading, slicing, filleting, and chopping. 

Code of practice for fish and fishery products (CAC/RCP 52-2003) defines:  

Clean water means water from any source where harmful microbiological contamination, substances 

and/or toxic plankton are not present in such quantities that may affect the safety of fish, shellfish and 

their products intended for human consumption. 

Codex General Standard for quick frozen fish fillets (CODEX STAN 190 – 1995) defines: 

Clean seawater is seawater which meets the same microbiological standards as potable water and is 

free from objectionable substances. 

Monitoring: The act of conducting a planned sequence of observations or measurements of control 

parameters to assess whether a control measure is under control. 

Sanitary survey: survey of the faecal pollution inputs, and their potential circulation within a given 

marine environment 

Validation: Obtaining evidence that a control measure or combination of control measures, if properly 

implemented, is capable of controlling the hazard to a specified outcome. 

Verification: The application of methods, procedures, tests and other evaluations, in addition to 

monitoring, to determine whether a control measure is or has been operating as intended.  
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ABBREVIATIONS 

ADI   Acceptable daily intake 

ASP   Amnesic shellfish poisoning 

B2M   Beta-2-microglobulin 

BIOHAZ Panel  EFSA Panel on Biological Hazards  

BMD   Benchmark dose 

BMDL01  Benchmark dose (BMD) of 1 % extra risk 

BMDL5   Benchmark dose lower confidence limit 

B-Pb   Blood lead 

BTX   Brevetoxin 

b.w.   Body weight 

Cd   Cadmium 

CKD   Chronic kidney disease 

CONTAM Panel EFSA Panel on Contaminants in the Food Chain 

Cu   Copper 

DA    Domoic acid  

DPD    Diethyl paraphenylene diamine 

DSP   Diarrhoeic shellfish poisoning 

GAC   Granular activated carbon  

HAA    Halogenated acetic acids 

IARC   International Agency for Research on Cancer 

ICES   International Council for the Exploration of the Sea 

JECFA   Joint FAO/WHO Expert Committee on Food Additives 

JMPR   Joint FAO/WHO meeting on Pesticides Residues 

MOE   Margin of exposure 

NDA   EFSA Panel on Dietetic Products, Nutrition, and Allergies 

NOAEL  No-observed-adverse-effect level 

NSP   Neurotoxic shellfish poisoning 

OA   Okadaic acid 

PAC   Powdered activated carbon 

PAHs   Polynuclear aromatic hydrocarbons 

PCBs   Polychlorinated biphenyls 

PSP   Paralytic shellfish poisoning  

PTWI    Provisional tolerable weekly intake 

PlTX   Palytoxin 

ROS   Reactive oxygen species 

SBP   Systolic blood pressure 
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SCF   Scientific Committee on Food 

STX   Saxitoxin 

TDI   Tolerable Daily Intake 

THM   Trihalomethanes 

UL   Upper intake level 

U.S.A.   United States of America 

UV   Ultraviolet 

V    Antimony 

WHO   World Health Organization 
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